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Quantifiers in constraints n

So far, we have considered OPF problems where the boundary
conditions (e.g. power absorbed/injected by the loads and non-
controllable renewables) are known by the operator in a deterministic
way.

However, within an operational context (for instance, in the
computation of a day-ahead dispatch problem), this is not the case
since power absorbed by loads and injected by non-conirollable
renewables (e.g., photovoltaic and wind power plants) is uncertain.

Therefore, we need to cast the OPF as an optimization method
capable of handling boundary conditions whose realizations are
statistically known and expected to fall within intervals provided by
forecasting tools.



Quantifiers in constraints

Consider the following optimization problem

(P;) min @(uq,u,)
Uq,Up

S.t.
Constraints C(uq,u,)
Vd; s.t. 4 <d; <5, u; + 2u, —3d; <10

The variable d, can be considered as the uncertainty of a parameter
of the problem that has a known probability to be within bounds.

It is worth noting that:

= the optimization variables are (uy,u,) and not (uy, u,,d,);
= we are interested in finding an optimal (uj, u3);

= d,is adummy variable.



Quantifiers in constraints n

The constraint on the dummy variable

Vd; s.t.4<d; <5, u, +2u, —3d; <10
Is equivalent to:
l. uyy+2u, < min (10+3d;)

dq:4=<dq <5
2. u;+2u, <22
3. Both
4. None

5. Idon't know



Quantifiers in constraints n

The constraint on the dummy variable

Vd; s.t.4<d; <5, u, +2u, —3d; <10
Is equivalent to:
l. uyy+2u, < min (10+3d;)

dq:4=<dq <5
2. u;+2u, <22
3. Both
4. None

5. Idon't know

Answer 3
Answer 1 is true because saying that Expr < f(d,) foralld, € D is the

same as saying that Expr < min f(d,) whenever Expr does not depend
d1ED
on dl' Here, EXpr‘ = Uq + Zuz,f(dl) = 10 + 3d1 C]ﬂd D = [4,5]

Answer 2 is true because . Tiarll 5(10 +3d,) =22and (P,) is eq. to (P',):
1-4=dq=

(P;) min ¢(uq,u,)
Uq,Up
S.t.

Constraints C(uq, u,)
uq + 2 [2%) < 22



Quantifiers in constraints

Consider a different optimization problem

(P,) min ¢(uy, u,)
Uq,Up

S.t.
Constraints C(uq,u,)
dd;s.t.4 < d; <5, u; + 2u, — 3d; <10

Note that, as in (P,):

= the optimization variables are (uy, u,) and not (uy, u,,d,);
= we are interested in finding an optimal (uj, u3);

= d, isa dummy variable.



Quantifiers in constraints n

The constraint on the dummy variable

dd;s.t.4 <d; <5, u, +2u, —3d; <10
Is equivalent to:
1. u;+2u, < max (10+3d,)

dq:4<dq <5
2. u;+2u, <25
3. Both
4. None

5. Idon't know



Quantifiers in constraints n

The constraint on the dummy variable

dd;s.t.4 <d; <5, u, +2u, —3d; <10
Is equivalent to:
1. u;+2u, < max (10+3d,)

dq:4<dq <5
2. u;+2u, <25
3. Both
4. None
5. ldon’t know
Answer 3

Answer 1 is true because saying that Expr < f(d,) forsome d, € D is the

same as saying that Expr < max f(d,;) whenever Expr does not depend
d,€D

on dl’ Hel’e, EXpI‘ = Uq + Zuz,f(dl) =10+ 3d1 Oﬂd D = [4,5]
Answer 2 is true because , max 5(10 + 3d,) = 25. Therefore, (P,) is eq.
1:4=aq=
fo (P';)
(P,") 3113; o (uq,up)
S.t.

Constraints C(uq, u,)
uq + 2 Uy < 25



Quantifiers in constraints n

Consider a different optimization problem (without quantifiers in
constraints)

(Ps) mln (U, uy)

Up,dq
S.t.

Constraints C(uq,u,)
4Sd1£5, u1+2u2_3d1S10

Note that, differently from (P;):
= the optimization variables are (uq,u,,d,);
= we are inferested in finding an optimal (uj, u5.d3).



Quantifiers in constraints n

Solving (P;) gives the solution of (P) min ¢(uy, uy)

. (Pl) s.t. o

2. (Pz) Constraints C(uq, u,)

3. BOTh le s.t.4 < dl < 5, Uuq + 2u2 - 3d1 <10
4. None .

5. Idon't know (P) min ¢(us,u2)

S.t.
Constraints C(uq,u,)
Hdls.t.4Sd1 < 5, u1+2u2—3d1 <10

(P3) min ¢(uy,uy)
Uq,Uz,dq

S.t.
Constraints C(uq, u,)
4Sd1$5, u1+2u2—3d1S10



Quantifiers in constraints

Solving (P;) gives the solution of

(Py)

1.

2. (Pp)

3. Both

4. None

5. ldon't know
Answer 2

Indeed, (P;) solves (P,) (see next
slides).

Solving (P;) gives an optimal
(uj,us,d3). The corresponding (uj, ujy)
are an optimal solution of (P,) and, for
this (uj, u;), there exists d, = d; that

safisfies 4 <d, <5, u; +2u, — 3d; < 10.

(Py) min ¢(uq,uy)
Uq,Up

S.t.
Constraints C(uq,u,)
les.t.4Sd1S5, u1+2u2—3d1S10

(Py) min @(uq, uy)
Uq,Uy

S.t.
Constraints C(uq,u,)
Hdls.t.4Sd1 < 5, u1+2u2—3d1 <10

(P3) min ¢(uy,uy)
Uq,Uz,dq

S.t.
Constraints C(uq, u,)
4Sd1$5, u1+2u2—3d1S10



Quantifiers in constraints m

3d € D, C(w, d) (deD
(Py) min@(u) s. t.{ C’(’u) ' (Pz) minp(u) s.t.q ¢ d)
u u,d k Cl(u)

Theorem

1. The optimal values of (P,) and (Pg) are equal.

2. If u*is an optimal solution of (P,) then there exists some d* such that
(u*,d*) is an optimal solution of (Pg)

3. If (w*,d*) is an optimal solution of (Pg), then u* is an optimal solution
of (P,).



Quantifiers in constraints n

Proof
Let us assume the constraints in both (P,) and (P,) defining closed sefts. This ensures that, when the
problems are bounded, the minimum exists and is obtained for each of them.

1) If uisfeasible for (P,), then there exists some d such that (u, d) is feasible for (Pg). Conversely, if (u,d)
is feasible for (Pg), then u is feasible for (P,). Thus (A) feasible < (B) is feasible.

2) Assume (P,) is unbounded: for any M € R, there exists some u, feasible for (P,), such that ¢(u) < M.
Since u is feasible for (P,), there is some d such that (u, d) is feasible for (Pg) and ¢(uw) < M. Thus, (Pg) is
unbounded. Similarly, we have that, if (Pg) is unbounded, then (P,) is unbounded too. Thus, (P,)
unbounded < (Pg) is unbounded.

This shows item 1 when the optimal value of (P,) or (Pg) is infinite.

Assume in the rest that the optimal values of (P,) and (Pg) are finite. Since the constraints in both (P,)
and (Pg) define closed sets, the minimum exists and is obtained for each problem.

3) Let us prove that if (u*, d*) is an optimal solution of (Pg), then u* is an optimal solution of (P4) and the
optimal values are the same. For dll (u, d) that satisfies the constraints of (Pg) we have ¢(u) = p(u*).
Now let u be a feasible value of (P,); this means that there is one d such that (u, d) satisfies the
constraints of (Pg); therefore, p(u) = p(u*). Furthermore, u* is feasible because there exists some d
(take d = d*) such that (u*, d) safisfies the constraints of (Pg). This proves that u* is an optimal solution
of (P,). Moreover, the optimal values of (Pg) and (P,) are both equal to ¢(u*).

4) Conversely, assume u* is an optimal solution of (P,); u* is feasible for (P,), i.e. there exists some d*
such that (u*, d*) satisfies the constraints of (Pg). We claim that(u*, d*) is an optimal solution of (Pg).
First, note that (u*, d*) is feasible for (Pg). Second, for any feasible point (u, d) of (Pg), we have that u is
feasible for (P,), therefore ¢(x) = @(x*). This proves that (u*, d*) is an optimal solution of (Pg).
Moreover, the optimal values of (Pg) and (P,) are both equal to ¢(u*). O



Quantifiers in constraints m

To summarize:
Removal of V¥ and 3: whenever Expr does not depend on d:

mlnf(d) f(d)  max f(d)

[Vd € D, Expr < f(d)] EXpr < mlnf(d)] :
debD Expr f(d)
d
[Vvd € D,Expr > f(d)] © Expr > maxf(d)] rnmf(d) ma>|<f(.)
dED Evpr

[3d € D,Expr < f(d)] & [Expr < mazl(g;(d)] min £(d) f(@)  maxf(d)

[3d € D,Expr = f(d)]| & [Expr > minf(d)] | E.p l
debD Xpr

Removal of 3 with supplementary variables
_ dd € D,C(u,d)
min p(u) s.t. C'(u)

can be addressed by solving

(deD

min(u) s.t.3 ¢ ad)
u,d | C/(u)




Quantifiers in constraints m
Which problem(s) can be used to solve (P) ¢

1. (Pa) (P)  min_ C(=Py, — Py, +7.00) + C,(B,,) + C3(P,,)
2 (P ) Pg,/Pg3.P11,P15.P15
° B s.t. P, € [0.50; 1.50], P, € [0.50;1.50], P,, € [4.00; 6.00]

3. BOTh Png = _sz - Pg3 + Pl1 + Plz + Pl3 = anfax

4. None —P>< 222 (0.036(P;, — P,,) + 0.018(P,, — P,,)) < P[3™

5. ldon'tknow —P[3™ < 11.1(0.018(Py, — P,,) +0.054(P,, — P,))) < P
—PJ* < 11.1 (0.018(sz —P,) —0.036(P,, — Pls)) < Py
0<P, <4
0<P, <4

(PA)P;?’iPr;SCl(—Rgz — Py, +7.00) + Co(Py,) + C3(Py,)

s.t.3P, € [0.50;1.50], 3P, € [0.50;1.50],3P,, € [4.00; 6.00]
Pgrilin = _sz o Pg3 + Pl1 + Plz + Pl3 = Pgr;lin

(PB)Pgl’LgsCl(—sz — P, +7.00) + C,(P,,) + C3(P,,)

s.t.VP,, €[0.50;1.50], vP,, €[0.50;1.50], VP, € [4.00; 6.00]
pn < —p —P, +P_ +P, +P, <P

2



Quantifiers in constraints
Which problem(s) can be used to solve (P) ¢

1. (Pa) (P)  min_ C(=Py, — Py, +7.00) + C,(B,,) + C3(P,,)
2 (P ) Pg,/Pg3.P11,P15.P15
° B s.t. P, € [0.50; 1.50], P, € [0.50;1.50], P,, € [4.00; 6.00]

3. BOTh Png = _sz - Pg3 + Pl1 + Plz + Pl3 = RqTax

4. None —P>< 222 (0.036(P;, — P,,) + 0.018(P,, — P,,)) < P[3™

5. ldon't know —P3* < 11.1(0.018(B,, — P,) + 0.054(F,, — P,,)) < PI%™
—PJ* < 11.1 (0.018(sz —P,) —0.036(P,, — Pl3)) < Py
0<P, <4
0<P, <4

(P) min Ci(=Fy, = Py, +7.00) + Co(By,) + C3(By,)
Answer 1 827793

s.t.3P, €[0.50;1.50],3P,, €[0.50;1.50],3P,, € [4.00;6.00]
(Pz) cannot t?e used fo solve pmin< p _p 1p +p, +p, <pmin
(P) because in (P) we
choose the loads Pli.ond () min (~By, ~ By, +7.00) + C,(B,) + (8

92" g3

genermqrs Fy, setpoints s.t.VP,, €[0.50;1.50], vP,, € [0.50; 1.50], VP, € [4.00; 6.00]
whereas in (PB) we do not PMin< _p — P, 4P, +P, + P, < Pmin
know which value P,
will take.

(P,) is the same as (P).

2
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Robust problems with separable constraints n

In power systems operation and control, we often solve problems like
the following (i.e., robust problems) that can be solved by separating
the constraints.

(P) min ¢(u)

UueR"
Constraints on u

STl u+ () d<y,vdeRPst. Dd < c,j =1

where u (i.e., the decision variable) are generators setpoints and d
(i.e., the stochastic disturbance) is the (aggregated) load. Let us apply
the “removal of V" to every constraint j = 1:]

(@) u+ (b)) d < yj,Vd ERPs.t. Dd < ¢
o () u<—(b) d+ yj,Vd ERPs.t. Dd < ¢

o @) us min [-0) d+y|=n

= (aj)Tu < h]



Robust problems with separable constraints m

In power systems operation and control, we often solve problems like
the following (i.e., robust problems) that can be solved by separating
the constraints.

(P) min ¢(u)

UueR"
Constraints on u

STl u+ () d<y,vdeRPst. Dd < c,j =1

Solution:
1. Foreveryj=1:] solve the problem:

(Q)) Cgrel]ierlj(— (bj)Td +vy;j) s.tDd <c

let h; be the optimal value of (Q;)
2. Replace (P) by the equivalent problem:
(P’) min ¢(w)

ueR”"
Constraints on u

St (aj)Tu <h;,j=1:]



Robust problems with separable constraints m

IOMW < P, < 110MW WOMW < P, < 110MW

Example: we would like to compute
the usual DC-OPF assuming loads

P, P, P, (i.e. the disturbances) g 9
predicted with some uncertainty. 1 2
9OMW < P, < 110MW T e ttipa
IOMW < P, < 110MW
; 3 S, = 100MVA
480MW < P, < 520MW ; Vi = 220KV
3
. 480MW < P, < 520MW
How does this affect the ;
dispatch plan 2 p;“}‘;;ci(”gi)
Note that we can controlonly F, P, 5t
. . . By, + P, =222(—0,) +11.1(—65)
since bus 1 is the slack bus and F,_is P+, =222(6) +111(6; — 85)
determined by the power balance of P, + P, = 11.1(65) + 11.1(8; — 6,)
the load flow when Pin < P, < PIMO%, i =123
F,,, B, P, P, P, are known. —PI¥¥S Py, < PIE

max max
—Pi3" <Pz <Pj3

__pmax max
Quantity Value P37 s Pos < Pog

min omax i PI,Z = 22.2 (O - 92)
™ B 0+ 400 MW Pys = 11.1(0 — 6)

Cy,Cy, Cs 15,1,225 CHF/MWh P23 =11.1(6, — 63)
—-r<0;<mi=23
S15%%, ST, SH 200,200,300 MW :



Robust problems with separable constraints m

. . IOMW < P, < 110MW IOMW < P, < 110MW
The cost ¥7_; C; (B,,). is influenced by | l
the disturbance and cannot be Vrs = 22200
known in advance. g1 g2
1 2

Furthermore, the constraints also F,a = —j1l1pu T —itiip
depend on the disturbance. Our 3
choice on P, , F,, must work Sp = 100MVA

. . . Vy = 220kV
regardless of the disturbance (in this 93

480MW < P, < 520MW

i, 2, (0)

We need to formulate a problem that s.t.

addresses these two questions: s ;&;):111 1'(10(__93;)

1. What should we minimize ? b 114080 + 1116, — )
° g3 I3 — ' 3 . 3 2

2. Constraints must be adapted to

sense must be robust).

PJn < Py, < PMOX, i =1,2,3

reflect the uncertainty of _ppcs p,, < P
disturbances. —P¥™ < P g < P
PSS Pos < PIET

. P, =222(0—6,)

By, By 0+ 400 MW Prs = 11.1(0 — 65)

Cy,Cy, C3 15,1,225 CHF/MWh P23 =11.1(6, — 63)

S{3%, S35, S| 200,200,300 Mw " = O=TE=23
12 223 Y31 ) )
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Stochastic OPF m

In a stochastic optimisation problem, we need to take decisions (i.e.,
choose some control parameters u € U) in the presence of a random
disturbance d € D.

The state of the controlled system x will be function of both the control
and the disturbance x = F(u, d) and must be feasible (x € X).

As in the previous OPF formulations, the state x consists of all variables
In the optimization problem other than u, d (e.g., nodal voltages and
branches powers/currents).

The costis C(u,x) = C(u, F(u,d))

A stochastic optimization framework assumes the disturbance to be
drawn as a random vector in the set D (i.e. the modeler knows the
statistical distribution of the disturbance).

The objective function is the expected cost (since the disturbance is
randomly drawn) and the constraints must be satisfied for all possible
realizations of the disturbance.



Stochastic OPF m

The feasibility of the constraints has to be imposed for all the drawn
random disturbances and, therefore, it is guaranteed with some
probability.

Let C(w) = E[C(u,x)] = Eq[C(u, F(u,d))]

The problem is

min C(u)

s.t.(Vvd € D,3x,x = F(u,d) and x € X)

or, in compact form:

min C(w)

s.t.(Vd € D,F(u,d) € X)



Stochastic OPF

min CyPgq + CoPyy + C3Py3
Pg,.Pgs3
s.t.

Rt < Pg, < Bgi™,1=2,3
VP, €[0.9,1.1],vP, €[0.9,1.1]
VP, €[4.85.2]

There exist some
P 02,93, P1,21P1,3'P2,3 with

o
Py, + P, =222 (=63) + 11.1(—65)
By, + P, = 22.2(6,) + 11.1(6, — 65)
By, + P, = 11.1(63) + 11.1 (65 — 65,)
Py, =—P,—P, +P +P,+P,
pMn < p, < PJreX

—P*< Py, < P
—P{%ax <P3< P{’gax
—P¥¥< P,3 < P
Py, =222(0—-06,)
Py 3 =11.1(0 — 63)
Py3 = 11.1(6, — 63)
—n<0;<mi=23

() P, =100+ 10 MW P, =100+ 10MW
ueu Yy, = —j22.2pu
foraldep 91 b2
] 2
Y13 = —jll.1pu Yp3 = —jllipu
3 S, = 100MVA
V, = 220kV
93
P, =500 + 20MW
x =F(u,d)
x€eX

Decision variables: u = (£, F;,)

Disturbance: d = (P, P, P1,)

State: x = (Fy,, 02,03, P12, P13, P2 3)

Expected cost: C(Pyz, Pys) = C1Pgy + CoPys + C3Py3
with B, = —Fy, — Py, + P, + P, + 13_13

we fake P, = 1pu, P,=1puand P, = 5pu



Stochastic OPF

In a compact form we have:

rréiglc_'(u) s.t.(Vd € D,3x,x = F(u,d) and x € X)
u

or
rréilglf(u) s.c.(Vd € D,F(u,d) € X)
u

Decision variables: u = (F,,, P,.)
Disturbance: d = (P, Py, P.,)

State: x = (Fy,, 02,03, P12, P13, P2 3)
Expected cost: C1Pyq + CaPyy + C3Pys3
with By = —F;, = Fy, + P, + P, + Py,

We get
Pg1 - —sz - ng + Pll + Plz + Pl3

0, = 0.036(P,, — P,) + 0.018(P,, — P,.)
65 = 0.018(P,, — P,) + 0.054(P,, — P,,)
Py, = 22.2 (0.036(F;, — P,,) +0.018(P,, — P.,))
Pys = 11.1(0.018(F,, — P,) + 0.054(, — P,,))
P,s = 11.1(0.018(F,, — P,) — 0.036(F, — P,,))

P, =100+ 10 MW P, =100 + 10MW

Y12 = —j22.2pu

gl gz
1 2
Y13 = —jll.1pu Y,3 = —j1l.ipu
3 Sp = 100MVA
Vy, = 220kV
93

P, =500 + 20MW

x =F(u,d)



Stochastic OPF m

The problem is: - P, =100+ 10 MW P, =100+ 10MW
P, +P, +P,

min C(P,,,P,.) = min Ci(=P,, — P, +7.00) + C,(P,,) + C3(B5) Ti2 = /2220w

Py, Py, g2’ 93 Py, Py, 1 92 g3 ' 2\" 9> 3\ s g1 g2

vP,, € [0.90,1.10], vP,, € [0.90,1.10], VP, € [4.80,5.20] ] 5

PMn < —p — P, + P, + P, + P, <PmX

—pmax< 222 (0.036(r,, — P,) +0.018(E,, — 1)) < P3™
—PP < 11.1(0.018(F,, — P,,) +0.054(P,, — P,,)) < P/§™ S 1ooma
Py < 11.1 (0.018(1?92 —P,,) —0.036(P,, — Plg)) < Py V, = 2200

: 93
ng:l <P, < ngz P, =500 + 20MW
Pgs = Pg3 = Pg3

So, we have obtained a robust problem with separable constraints:
min C ()
u
s.t.(a)) u+ (b)) d< Vi, =1:]
Vds.t. Dd <c

where, for every j, we have that o/, b’ are vectors, with u = (P, , P,)
and d = (P, P, P.,). This problem can be solved using the qpproqch in
slide 18 (i.e. solution of robust problems with separable constraints).



Stochastic OPF

Let’s apply the solution of robust
problems with separable constraints

to the first one (assuming P

VP, € [0.90,1.10],‘V’Pl2 € [0.90,1.10],‘V’Pl3 € [4.80,5.20]

0<-—P,—P, +P,+P,+P,

That is equivalent to:

VP, € [0.9,1.10],VPl2 € [0.90,1.10],VP13 € [4.80,5.20]pu

Py, + By, < P, + P, + P

That is equivalent to:

P, =100+ 10 MW P, =100 + 10MW

Y12 = —j22.2pu

gl gz
1 2
Y13 =—j1l.1pu Y,3 = —j1l.ipu
3 Sp = 100MVA
Vy, = 220kV

93

P, =500 + 20MW

P, + Py, < min (P, +P, +P,)s.t.P,, P, €[0.90,1.10],P, € [4.80,5.20]

P1,,P1,,P14

The solution of the above problem gives h; = 0.90 + 0.90 + 4.80 = 6.60
Hence, the first constraint of the original problem is equivalent to
B,, + P,, < 6.60.

This process has to be applied to all the constraints of the original

problem.



Stochastic OPF

After having applied the previous
process to all the constraints, the

original problem becomes:

,min C(P,,, B),) = C1(—P, — Py, +7.00) + C(B,,) + C3(By,)

92" 93
S.t.

34<P, +P, <66
0.96 < 0.8P,, + 0.4P,, < 4.64
0.34 < 0.2P,, + 0.6P,, < 6.06
~0.1 < —0.2P,, + 0.4P,, < 3.7
0<P,<40<P <4

P, =100+ 10MW P, =100+ 10MW

Y12 = —j22.2pu

91 92

S, = 100MVA
V, = 220kV

93

P, =500 + 20MW

The optimal values of the decision variables are:
F;, = 2.43pu = 243MW
Py, = 0.97pu = 97MW

the expected generation B, from g, is:

;=

P, =—F,—PF,+P, +P,+P, =-243-097+1+1+5=3.6pu

= 360MW

and the expected cost is C(P,_, B, ) = 27'393CHF.



Stochastic OPF

It is interesting to note that, if we P, =100 £ 51 MW B, =100 & S1MW
increase the uncertainties to values
as in the figure, the problem becomes

Y12 = —j22.2pu

91 )
i 1 2
Jmip C(By, Py,) = Ci(—Py, — By, +7.00) + Co(By,) + C3(Ry,) P - i T~ it
s.t.
5.03 < Py, + Py, < 4.97 3
Sp = 100MVA
1.612 < 0.8F, + 0.4P,, < 3.988

0.908 < 0.2P,, + 0.6P;, < 5.492
0.306 < —0.2P, + 0.4P,, < 3.294

V, = 220kV

93

P, =500 + 101MW

0<P,<40<P, <4

That is infeasible. In other words, the amount of uncertainties in the
loads is so high that we cannot find an optimal solution.

It is also interesting to note that, by increasing the uncertainties, the
global cost of the system progressively increases until the problem
becomes infeasible.



Stochastic OPF -

In general, it is difficult to have deterministic bounds on the stochastic
variables (in our case P, P, P,,).

Therefore, we can assume these quantities to be within some bounds
with a certain probability.

Let us assume that the unknown loads are independent and follow
normal distributions: P, ~ V' (P, v;,) where P, is the expected value and
v, the variance.

letn be suchthat P(—n <X <n) =1-awhere X ~N(0,1) (standard
normal distribution, for example, n = 1.96 when a = 0.05).

Then with probability 1 — e = (1 — a)3:
Pll—ﬁ\/v_zl<le SP11+77\/V_11
P, —n/v, <P, <P, +n/v,
P, —n /v, <P, <P, +n/[v,

The above inequadlities are called chance constraints.

For example, with e = 0.0001 we must take a = 3.33- 107> and n = 4.15.



Stochastic OPF -

With these inequalities

pll_n /1711SP11SP11+77 /vll
Plz_n /UIZSPIZ SP12+77 /Ulz
Pl3—77 /1713 SPI3 SP13+77 /Uls

we have now a robust optimization problem, same as before, but with
different bounds on the disturbance and a different cost function (with
a term that accounts for the variance).




Stochastic OPF -

To summarize.

System state: x = F(u, d) electric state, power flows.
Decision variables: u generator setpoints u € U.
Disturbance: d aggregated renewables+loads.

We want to minimize E(C(u, x)) subject to feasibility (x € X) regardless of
disturbance, with high probability
min Eq (c(u, F'(w, d))

s.t.P(F(lud)eX)>1—¢

where ¢ is a small probability (risk of failure). The chance constraint is
fransformed into the constraintd € D such that P(d € D) =1 — ¢:

min c(u)

ueu

s.tVdEDAu+Bd<e

where C(u) = E;(C(u, F(u, d)). The problem is then transformed into @
standard optimization by eliminating d (i.e., removing the quantifier v).



Outline

Robust OPF




Robust OPF -

In power systems, there are many cases where the grid operator may
take decisions that are not necessarily optimal but robust in the sense
that the solution is determined for the worst-case cost associated to
stochastic variables.

This is an alternative to stochastic opfimization and is also called non-
probabilistic robust optimization.

We choose a controlu € U.

Disturbance d € D are random.

The system state x becomes x = F(u, d) and we want it to be feasible
(x € X).

We pay a cost C(u,x) = C(u, F(u, d)).

Non-probabilistic robust optimization assumes the disturbance is drawn
in a set D (no distribution is assumed, only bounds) and the
optimization function is the worst-case cost. The constraints are the
standard feasibility ones. In other words, we obtain:

min [max C(u, F(u, d))]

uelU LdebD

s.c.F(u,d)eX, vdeD




Robust OPF

Let us write the robust OPF for the
three-bus example whose load flow

constraint are represented by
the DC load flow.

Important observation: the constraints
are the same as in the stochastic OPF
only the objective function is different.

min max ( 1(
Pg,.Pg, | P1,€[0.9,1.1],P;,€[0.9,1.1]
P,€[4.8,5.2]
s.t.

vP,, €[0.90,1.10],vP,, € [0.90,1.10],VP,, €

pMn < —p, —P,

€ [4.80,5.20]
2o + P+ Py + P < PJROX

P, =100+ 10 MW P, = 100 + 10MW

Y1, = —j22.2pu

91 92

S, = 100MVA
V, = 220kV

93

=500 £ 20MW

L+ P +P,+ Pl3) + CoPyp + C3Py3)

— P < 222 (0.036(sz —P,)+ 0.018(1)93 — plg)) < pmax

—P™ < 11.1(0.018(F,, — Py,) + 0.054(

P, — Pl3)) < ppmox

—PJ* < 11.1 (0.018(sz — P,,) — 0.036(P,, — Pl3)) < Py

min max

sz_ s sz < sz
min max

Pg3 = Pg3 = Pg3



Robust OPF

For the inner max problem P, =100+ 10 MW P, =100 £ 10MW
C,(—P;, — Py, + P, +P,+P,)

max _ ,

P;,€[0.9,1.1],P;,€[0.9,1.1] +6‘2sz + C3Pg3 Y, =—j22.2pu
P, €[4.8,5.2] g1 92
: : 1 2
we can easily compute the maximum g
. . Via=—j u 53 = —j1l.1pu

value (i.e., in correspondence of the Fis = jlL1p fea = A
maximum loads) and obtain the 3

. Sp = 100MVA
following problem: : V, = 220KV

3

min (Cy(=Fy, = By, + 7.4) + CoPga + C3Py3) P, =500 + 20MW
92" 93
S.t.
VP, €[0.90,1.10],vP,, € [0.90,1.10], VP, € [4.80,5.20]
Pt < —p, — Py + P, + Py, + P, < PJ"9¥ Observation: the objective

max o  Ihe one of the stochastic
~PIY™ < 11.1(0.018(By, — P,) + 0.054(R, — P,)) < PI¥™ 5Bk where. instead, the

—PJ < 11.1(0.018(R,, — P,) — 0.036(R,, — P,.)) < PI¥*  disturbance was taken to

PJi" < P, < PJn* the average value:
Fg: " < Py =< Fgi™ Cl(_sz — g, 7'0) T CZ(sz)
+ C3(F,)

Here is the worst-case cost.



Robust OPF n

Let us try to generalise the removal of max from the problem
objective. Robust OPF have the following generic form:

min [max o(u,d’ )]

ueu dED
s.t.(a/) u+ (b)) d<y;,vd€D,j=1:]

To get rid of the max in the objective function, recall from lecture 4.1,
the max-removal transformation applied to the above. We have that

wp [y o0

(constraints onu)

Is equivalent to:

min &
ueu,cer

€2 (pJ(U,),] — 1]

s. t. _
(constraints on u)



Robust OPF

Therefore, our robust OPF of the generic form:

mip (e (e )

s.t.(a/) u+ (b)) d<y;,vd€D,j=1:]
is equivalent to:

min &
u €ev,ceR

o(u,d) <eVvVd €D

i (/) u+ (b)) d<y;,vd€D,j=1:]

Note that in the above problem, we have the quantifier v in the
constraints, which we can be solved using the approach in slide 18
(i.e. solution of robust problems with separable consiraints).



Robust OPF n

Left us take back our example. P, =100£10MW P, =100+ 10MW
By using the max-removal transformation
we have that the robust OPF is ¥z = —j222pu

91 92

1 2
min & Y13 =—jll.1pu Y,3 = —j1l.1pu
Pg,Pg3.€
s.t. 3
Sp = 100MVA

vP, €1[0.90,1.10],vP,, € [0.90,1.10], VP;, € [4.80,5.20] V, = 220KV

C(—Pg, = Pgs + Pi, + Piy + Piy) + CoPgz + C3Pg3 < € P, = 500 £ 20MW
mmn max

Fo, ™" = =g, = Fgs + P, + P, + Py < Fy)

—P< 22.2 (0.036(P;, — P,) + 0.018(P,, — P,)) < PI3*
—Plrz?_?;ax <11.1 (0'018(P.92 - Plz) + 0'054(P93 o Pl3)) < Pﬁ’ax
—PZT%ax <11.1 (0'018(P92 - Plz) - 0'036(P93 o PZB)) < Pgl?’ax
P < By, < PO

g™ < FByy < Fgi™

To solve it, we remove V, as shown earlier, by computing the worst
case over P, for each constraint.



Robust OPF

With respect to the robust OPF:

Pgy»
P1,€[4.8,5.2]

s.t.

VP, €[0.90,1.10], vP,, € [0.90,1.10], VP, € [4.80,5.20]
Png S _sz - Pgs + Pl1 + Plz + Pls S PgTax

—PI*< 22.2 (0.036(sz —P,,) +0.018(P,, — Pzg)) < P2
—PJ* < 11.1(0.018(Ry, — P,,) + 0.054(P,, — P,,)) < Pi™
—Pp> < 11.1(0.018(Ry, — P,,) — 0.036(P,, — P,,)) < PIi™
PgT;‘Ll:TL S sz = PgT;lax

Fgg™ < By, < P

Which formulation is correct ¢
1. A

2. B

3. Both

4. None

5. ldon't know

min [p,le[o.g,l.rﬁ,‘}a’fz E[0.9‘1.1]( Ci(—Py, — Py, + P, + P, + Pp,) + CoPyy + C3Py3)

P, =100+ 10 MW P, = 100 + 10MW

Y12 = —j22.2pu

g1 92
1 2
Y13 = —jll.1pu Y,3 = —j1l.ipu
3 Sp = 100MVA
Vy, = 220kV
93
P13 =500+ 20MW
(A) min € s.t.
Pg,Pg3.€

C1i(—Py, — Py, +7.4) + CoPyp + C3Py3 < €
34<P,+P, <66
0.96 < 0.8P, + 0.4P,, < 4.64
0.34 < 0.2P,, + 0.6P,, < 6.06
—0.1 < —0.2P;, + 0.4P;, < 3.7
0<P, <40<P, <4

(8) min C1(=Py, — Py, + 7.4) + CoPyy + C3Py3
s.t.
34<P,+P, <66
0.96 < 0.8P, + 0.4P,, < 4.64
0.34 < 0.2P;, + 0.6P,, < 6.06
—0.1 < —0.2P,, + 0.4P;, < 3.7

0<P, <40<P, <4




Robust OPF

With respect to the robust OPF:

Pgy»
P1,€[4.8,5.2]

s.t.

VP, €[0.90,1.10], vP,, € [0.90,1.10], VP, € [4.80,5.20]
Png S _sz - Pgs + Pl1 + Plz + Pls S PgTax

—PI*< 22.2 (0.036(sz —P,,) +0.018(P,, — Pzg)) < P2
—PJ* < 11.1(0.018(Ry, — P,,) + 0.054(P,, — P,,)) < Pi™
—Pp> < 11.1(0.018(Ry, — P,,) — 0.036(P,, — P,,)) < PIi™
PgT;‘Ll:TL S sz = PgT;lax

Fgg™ < By, < P

Which formulation is correct ¢

1. A

2. B

3. Both

4. None

5. ldon't know
Answer 3

(B) is the formulation seen earlier with the max and is correct.
(A) is the formulation obtained by applying the generic method to
remove max from the objective function and is correct.

Both are equivalent. (A) has fewer optimization variables but needs

more work. (B) requires less work.

min [p,le[o.g,l.rﬁ,‘}a’fz E[0.9‘1.1]( Ci(—Py, — Py, + P, + P, + Pp,) + CoPyy + C3Py3)

P, =100+ 10 MW P, = 100 + 10MW

Y12 = —j22.2pu

g1 9>
1 2
Y13 = —jll.1pu Yy3 = —j1l.dpu
3 Sp = 100MVA
Vy, = 220kV
93
P13 =500+ 20MW
(A) min € s.t.
Pg,Pg3.€

C1i(—Py, — Py, +7.4) + CoPyp + C3Py3 < €
34<P,+P, <66
0.96 < 0.8P, + 0.4P,, < 4.64
0.34 < 0.2P,, + 0.6P,, < 6.06
—0.1 < —0.2P;, + 0.4P;, < 3.7
0<P, <40<P, <4

(8) min C1(=Py, — Py, + 7.4) + CoPyy + C3Py3
s.t.
34<P,+P, <66
0.96 < 0.8P, + 0.4P,, < 4.64
0.34 < 0.2P;, + 0.6P,, < 6.06
—0.1 < —0.2P,, + 0.4P;, < 3.7

0<P,<40<P, <4




Robust OPF

With respect to the robust OPF:

o P E[0.9‘1.1]( C1(—Py, — Py, + P, + P, + P,) + C2Pyp + C3Py3)
Py,€[4.8,5.2]
s.t.

vP,, €[0.90,1.10], vP,, € [0.90,1.10], VP, € [4.80,5.20]
Png S _sz - Pgs + Pl1 + Plz + Pls S PgTax

—PI*< 22.2 (0.036(sz —P,,) +0.018(P,, — Pzg)) < P2
—PJ* < 11.1(0.018(Ry, — P,,) + 0.054(P,, — P,,)) < Pi™
—Pp> < 11.1(0.018(Ry, — P,,) — 0.036(P,, — P,,)) < PIi™
PgT;‘Ll:TL S sz = PgT;lax

Fgg™ < By, < P

The optimal values of the decision
variables are:

P = 2.43pu = 243MW

Py, = 0.97pu = 97TMW

So, these are the same obtained for
the stochastic OPF.

However, the value of the objective is

27'993CHF. Therefore, higher than for the
case of the stochastic OPF since we
optimised for the worst-case cost.

P, =100+ 10 MW

Y12 = —j22.2pu

91
] 2
Y13 = —jll.1pu Yp3 = —jllipu
3 Sp = 100MVA
V, = 220kV
93
P, = 500 + 20MW
(A) min € s.t.

Pg,.Pg3.€
C1i(—Py, — Py, +7.4) + CoPyp + C3Py3 < €
34<P,+P, <66
0.96 < 0.8P, + 0.4P,, < 4.64
0.34 < 0.2P,, + 0.6P,, < 6.06
—0.1 < —0.2P;, + 0.4P;, < 3.7
0<P, <40<P, <4

(8) min C,(—Py,
S.t.
34<P, +P, <66
0.96 < 0.8P,, + 0.4P, < 4.64
034 < 0.2P,, + 0.6P,, < 6.06
~0.1 < —0.2P,, + 0.4P,, < 3.7

0<P, <40<P, <4

— Py, + 7.4) + C2Pgy + C3Py3

P, =100 + 10MW
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