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Quantifiers in constraints
So far, we have considered OPF problems where the boundary 
conditions (e.g. power absorbed/injected by the loads and non-
controllable renewables) are known by the operator in a deterministic 
way.

However, within an operational context (for instance, in the 
computation of a day-ahead dispatch problem), this is not the case 
since power absorbed by loads and injected by non-controllable 
renewables (e.g., photovoltaic and wind power plants) is uncertain.

Therefore, we need to cast the OPF as an optimization method 
capable of handling boundary conditions whose realizations are 
statistically known and expected to fall within intervals provided by 
forecasting tools.
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Quantifiers in constraints
Consider the following optimization problem

𝑃1 min
𝑢1,𝑢2

 𝜑 𝑢1, 𝑢2

𝑠. 𝑡.
Constraints 𝐶 𝑢1, 𝑢2

∀𝑑1 𝑠. 𝑡. 4 ≤ 𝑑1 ≤ 5, 𝑢1 + 2𝑢2 − 3𝑑1 ≤ 10

The variable 𝑑1 can be considered as the uncertainty of a parameter 
of the problem that has a known probability to be within bounds.

It is worth noting that:
▪ the optimization variables are 𝑢1, 𝑢2  and not 𝑢1, 𝑢2, 𝑑1 ;
▪ we are interested in finding an optimal 𝑢1

∗ , 𝑢2
∗ ;

▪ 𝑑1 is a dummy variable.
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Quantifiers in constraints
The constraint on the dummy variable

∀𝑑1 𝑠. 𝑡. 4 ≤ 𝑑1 ≤ 5, 𝑢1 + 2𝑢2 − 3𝑑1 ≤ 10
Is equivalent to:
1.  𝑢1 + 2 𝑢2  ≤  min

𝑑1∶ 4≤ 𝑑1 ≤5
 (10 + 3 𝑑1 )

2.  𝑢1 + 2 𝑢2 ≤ 22
3. Both 
4. None
5. I don’t know
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Quantifiers in constraints
The constraint on the dummy variable

∀𝑑1 𝑠. 𝑡. 4 ≤ 𝑑1 ≤ 5, 𝑢1 + 2𝑢2 − 3𝑑1 ≤ 10
Is equivalent to:
1.  𝑢1 + 2 𝑢2  ≤  min

𝑑1∶ 4≤ 𝑑1 ≤5
 (10 + 3 𝑑1 )

2.  𝑢1 + 2 𝑢2 ≤ 22
3. Both 
4. None
5. I don’t know

Answer 3
Answer 1 is true because saying that Expr ≤ 𝑓(𝑑1) for all 𝑑1 ∈ 𝐷 is the 
same as saying that  Expr ≤ min 𝑓 𝑑1

𝑑1∈𝐷
 whenever Expr does not depend 

on 𝑑1. Here, Expr = 𝑢1 + 2𝑢2, 𝑓 𝑑1 = 10 + 3𝑑1 and 𝐷 = [4,5]
Answer 2 is true because min

𝑑1: 4≤𝑑1≤5
(10 + 3 𝑑1) = 22 and (𝑃1) is eq. to (𝑃′1): 

𝑃1′ min
𝑢1,𝑢2

 𝜑 𝑢1, 𝑢2

𝑠. 𝑡.
Constraints 𝐶 𝑢1, 𝑢2

𝑢1 + 2 𝑢2 ≤ 22
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Quantifiers in constraints
Consider a different optimization problem

𝑃2 min
𝑢1,𝑢2

 𝜑 𝑢1, 𝑢2

𝑠. 𝑡.
Constraints 𝐶 𝑢1, 𝑢2

∃𝑑1𝑠. 𝑡. 4 ≤ 𝑑1 ≤ 5, 𝑢1 + 2𝑢2 − 3𝑑1 ≤ 10

Note that, as in 𝑃1 :
▪ the optimization variables are 𝑢1, 𝑢2  and not 𝑢1, 𝑢2, 𝑑1 ;
▪ we are interested in finding an optimal 𝑢1

∗ , 𝑢2
∗ ;

▪ 𝑑1 is a dummy variable.
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Quantifiers in constraints
The constraint on the dummy variable

∃𝑑1𝑠. 𝑡. 4 ≤ 𝑑1 ≤ 5, 𝑢1 + 2𝑢2 − 3𝑑1 ≤ 10
Is equivalent to:
1.  𝑢1 + 2𝑢2  ≤  max

𝑑1∶ 4≤ 𝑑1 ≤5
 (10 + 3𝑑1)

2.  𝑢1 + 2 𝑢2 ≤ 25
3. Both 
4. None
5. I don’t know
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Quantifiers in constraints
The constraint on the dummy variable

∃𝑑1𝑠. 𝑡. 4 ≤ 𝑑1 ≤ 5, 𝑢1 + 2𝑢2 − 3𝑑1 ≤ 10
Is equivalent to:
1.  𝑢1 + 2𝑢2  ≤  max

𝑑1∶ 4≤ 𝑑1 ≤5
 (10 + 3𝑑1)

2.  𝑢1 + 2 𝑢2 ≤ 25
3. Both 
4. None
5. I don’t know
Answer 3
Answer 1 is true because saying that Expr ≤ 𝑓(𝑑1) for some 𝑑1 ∈ 𝐷 is the 
same as saying that Expr ≤ max 𝑓(𝑑1)

𝑑1∈𝐷
 whenever Expr does not depend 

on 𝑑1. Here, Expr = 𝑢1 + 2𝑢2, 𝑓 𝑑1 = 10 + 3𝑑1 and 𝐷 = [4,5] 
Answer 2 is true because max

𝑑1:4≤𝑑1≤5
(10 + 3𝑑1) = 25. Therefore, (𝑃2) is eq. 

to (𝑃′2) 
𝑃2′ min

𝑢1,𝑢2
 𝜑 𝑢1, 𝑢2

𝑠. 𝑡.
Constraints 𝐶 𝑢1, 𝑢2

𝑢1 + 2 𝑢2 ≤ 25
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Quantifiers in constraints
Consider a different optimization problem (without quantifiers in 
constraints)

𝑃3 min
𝑢1,𝑢2,𝑑1

 𝜑 𝑢1, 𝑢2

𝑠. 𝑡.
Constraints 𝐶 𝑢1, 𝑢2

4 ≤ 𝑑1 ≤ 5, 𝑢1 + 2𝑢2 − 3𝑑1 ≤ 10

Note that, differently from 𝑃1 :
▪ the optimization variables are 𝑢1, 𝑢2, 𝑑1 ;
▪ we are interested in finding an optimal 𝑢1

∗ , 𝑢2
∗ . 𝑑1

∗ .
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Quantifiers in constraints
Solving 𝑃3  gives the solution of
1. 𝑃1

2. 𝑃2

3.  Both
4.  None
5.  I don’t know
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𝑃1 min
𝑢1,𝑢2

 𝜑 𝑢1, 𝑢2

𝑠. 𝑡.
Constraints 𝐶 𝑢1, 𝑢2

∀𝑑1 𝑠. 𝑡. 4 ≤ 𝑑1 ≤ 5, 𝑢1 + 2𝑢2 − 3𝑑1 ≤ 10

𝑃2 min
𝑢1,𝑢2

 𝜑 𝑢1, 𝑢2

𝑠. 𝑡.
Constraints 𝐶 𝑢1, 𝑢2

∃𝑑1𝑠. 𝑡. 4 ≤ 𝑑1 ≤ 5, 𝑢1 + 2𝑢2 − 3𝑑1 ≤ 10

𝑃3 min
𝑢1,𝑢2,𝑑1

 𝜑 𝑢1, 𝑢2

𝑠. 𝑡.
Constraints 𝐶 𝑢1, 𝑢2

4 ≤ 𝑑1 ≤ 5, 𝑢1 + 2𝑢2 − 3𝑑1 ≤ 10



Quantifiers in constraints
Solving 𝑃3  gives the solution of
1. 𝑃1

2. 𝑃2

3.  Both
4.  None
5.  I don’t know
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𝑃1 min
𝑢1,𝑢2

 𝜑 𝑢1, 𝑢2

𝑠. 𝑡.
Constraints 𝐶 𝑢1, 𝑢2

∀𝑑1 𝑠. 𝑡. 4 ≤ 𝑑1 ≤ 5, 𝑢1 + 2𝑢2 − 3𝑑1 ≤ 10

𝑃2 min
𝑢1,𝑢2

 𝜑 𝑢1, 𝑢2

𝑠. 𝑡.
Constraints 𝐶 𝑢1, 𝑢2

∃𝑑1𝑠. 𝑡. 4 ≤ 𝑑1 ≤ 5, 𝑢1 + 2𝑢2 − 3𝑑1 ≤ 10

𝑃3 min
𝑢1,𝑢2,𝑑1

 𝜑 𝑢1, 𝑢2

𝑠. 𝑡.
Constraints 𝐶 𝑢1, 𝑢2

4 ≤ 𝑑1 ≤ 5, 𝑢1 + 2𝑢2 − 3𝑑1 ≤ 10

Answer 2
Indeed, 𝑃3 solves 𝑃2 (see next 
slides).

Solving 𝑃3  gives an optimal
𝑢1

∗ , 𝑢2
∗ , 𝑑1

∗ . The corresponding 𝑢1
∗ , 𝑢2

∗  
are an optimal solution of 𝑃2 and, for 
this 𝑢1

∗ , 𝑢2
∗ , there exists 𝑑1 = 𝑑1

∗ that 
satisfies 4 ≤ 𝑑1 ≤ 5,  𝑢1 + 2𝑢2 − 3𝑑1 ≤ 10.



Quantifiers in constraints

𝑃𝐴 min
𝑢

𝜑(𝑢) 𝑠. 𝑡. ቊ
∃𝑑 ∈ 𝐷, 𝐶(𝑢, 𝑑)

𝐶′(𝑢) 𝑃𝐵 min
𝑢,𝑑

𝜑(𝑢) 𝑠. 𝑡. ൞

𝑑 ∈ 𝐷
𝐶(𝑢, 𝑑)

𝐶′(𝑢)

Theorem
1. The optimal values of 𝑃𝐴  and 𝑃𝐵  are equal.
2. If 𝑢∗is an optimal solution of 𝑃𝐴  then there exists some 𝑑∗ such that 

(𝑢∗, 𝑑∗) is an optimal solution of 𝑃𝐵  
3. If (𝑢∗, 𝑑∗) is an optimal solution of 𝑃𝐵 , then 𝑢∗ is an optimal solution 

of 𝑃𝐴 .
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Quantifiers in constraints
Proof
Let us assume the constraints in both 𝑃𝐴  and 𝑃𝐴  defining closed sets. This ensures that, when the 

problems are bounded, the minimum exists and is obtained for each of them.

1) If  𝑢 is feasible for 𝑃𝐴 , then there exists some 𝑑 such that (𝑢, 𝑑) is feasible for 𝑃𝐵 . Conversely, if (𝑢, 𝑑) 

is feasible for 𝑃𝐵 , then 𝑢 is feasible for 𝑃𝐴 . Thus (A) feasible ⇔ (B) is feasible. 

2) Assume 𝑃𝐴  is unbounded: for any 𝑀 ∈ ℝ, there exists some 𝑢, feasible for 𝑃𝐴 , such that 𝜑 𝑢 ≤ 𝑀. 
Since 𝑢 is feasible for 𝑃𝐴 , there is some 𝑑 such that (𝑢, 𝑑) is feasible for 𝑃𝐵  and 𝜑 𝑢 ≤ 𝑀. Thus, 𝑃𝐵  is 
unbounded. Similarly, we have that, if 𝑃𝐵  is unbounded, then 𝑃𝐴  is unbounded too. Thus, 𝑃𝐴  

unbounded ⇔ 𝑃𝐵  is unbounded.
This shows item 1 when the optimal value of 𝑃𝐴  or 𝑃𝐵  is infinite.

Assume in the rest that the optimal values of 𝑃𝐴  and 𝑃𝐵  are finite. Since the constraints in both 𝑃𝐴  
and 𝑃𝐵  define closed sets, the minimum exists and is obtained for each problem.

3) Let us prove that if (𝑢∗, 𝑑∗) is an optimal solution of 𝑃𝐵 , then 𝑢∗ is an optimal solution of 𝑃𝐴  and the 
optimal values are the same. For all (𝑢, 𝑑) that satisfies the constraints of 𝑃𝐵  we have 𝜑 𝑢 ≥ 𝜑 𝑢∗ . 

Now let 𝑢 be a feasible value of 𝑃𝐴 ; this means that there is one 𝑑 such that (𝑢, 𝑑) satisfies the 
constraints of 𝑃𝐵 ; therefore, 𝜑 𝑢 ≥ 𝜑 𝑢∗ . Furthermore, 𝑢∗ is feasible because there exists some 𝑑 
(take 𝑑 = 𝑑∗) such that 𝑢∗ , 𝑑  satisfies the constraints of 𝑃𝐵 . This proves that 𝑢∗ is an optimal solution 

of 𝑃𝐴 . Moreover, the optimal values of 𝑃𝐵  and 𝑃𝐴  are both equal to 𝜑 𝑢∗ .

4) Conversely, assume 𝑢∗ is an optimal solution of 𝑃𝐴 ; 𝑢∗ is feasible for 𝑃𝐴 , i.e. there exists some 𝑑∗ 
such that (𝑢∗, 𝑑∗) satisfies the constraints of 𝑃𝐵 . We claim that(𝑢∗, 𝑑∗) is an optimal solution of 𝑃𝐵 . 
First, note that 𝑢∗, 𝑑∗  is feasible for 𝑃𝐵 . Second, for any feasible point (𝑢, 𝑑) of 𝑃𝐵 , we have that 𝑢 is 

feasible for 𝑃𝐴 , therefore 𝜑 𝑥 ≥ 𝜑(𝑥∗). This proves that (𝑢∗, 𝑑∗) is an optimal solution of 𝑃𝐵 . 
Moreover, the optimal values of 𝑃𝐵  and 𝑃𝐴  are both equal to 𝜑 𝑢∗ . 
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Quantifiers in constraints
To summarize:
Removal of ∀ and ∃: whenever Expr does not depend on 𝑑:

∀𝑑 ∈ 𝐷, Expr ≤ 𝑓 𝑑  ⇔ Expr ≤ min 𝑓 𝑑
𝑑∈𝐷

∀𝑑 ∈ 𝐷, Expr ≥ 𝑓 𝑑  ⇔ Expr ≥ max 𝑓 𝑑
𝑑∈𝐷

∃𝑑 ∈ 𝐷, Expr ≤ 𝑓 𝑑 ⇔ Expr ≤ max 𝑓 𝑑
𝑑∈𝐷

∃𝑑 ∈ 𝐷, Expr ≥ 𝑓 𝑑 ⇔ Expr ≥ min 𝑓 𝑑
𝑑∈𝐷

Removal of ∃ with supplementary variables

min
𝑢

𝜑(𝑢)  𝑠. 𝑡. ቊ
∃𝑑 ∈ 𝐷, 𝐶(𝑢, 𝑑)

𝐶′(𝑢) 

can be addressed by solving

min
𝑢,𝑑

𝜑(𝑢) 𝑠. 𝑡. ൞

𝑑 ∈ 𝐷
𝐶(𝑢, 𝑑)

𝐶′(𝑢)
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𝑓(𝑑)min 𝑓(𝑑) max 𝑓(𝑑)

𝐸𝑥𝑝𝑟

𝑓(𝑑)min 𝑓(𝑑) max 𝑓(𝑑)

𝐸𝑥𝑝𝑟

𝑓(𝑑)min 𝑓(𝑑) max 𝑓(𝑑)

𝐸𝑥𝑝𝑟



Quantifiers in constraints
Which problem(s) can be used to solve 𝑃 ?
1. 𝑃𝐴

2. 𝑃𝐵

3.  Both
4.  None
5.  I don’t know
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𝑃 min
𝑃𝑔2 ,𝑃𝑔3 ,𝑃𝑙1 ,𝑃𝑙2 ,𝑃𝑙3

𝐶1 −𝑃𝑔2
− 𝑃𝑔3

+ 7.00 + 𝐶2 𝑃𝑔2
+ 𝐶3(𝑃𝑔3

) 

s. t. 𝑃𝑙1
∈ 0.50; 1.50 , 𝑃𝑙2

∈ 0.50; 1.50 , 𝑃𝑙3
∈ 4.00; 6.00

𝑃𝑔1
𝑚𝑖𝑛 ≤ −𝑃𝑔2

− 𝑃𝑔3
+ 𝑃𝑙1

+ 𝑃𝑙2
+ 𝑃𝑙3

≤ 𝑃𝑔1
𝑚𝑎𝑥

−𝑃1,2
𝑚𝑎𝑥≤ 22.2 0.036 𝑃𝑔2

− 𝑃𝑙2
+ 0.018 𝑃𝑔3

− 𝑃𝑙3
≤ 𝑃1,2

𝑚𝑎𝑥

−𝑃1,3
𝑚𝑎𝑥 ≤ 11.1 0.018 𝑃𝑔2

− 𝑃𝑙2
+ 0.054 𝑃𝑔3

− 𝑃𝑙3
≤ 𝑃1,3

𝑚𝑎𝑥

−𝑃2,3
𝑚𝑎𝑥 ≤ 11.1 0.018 𝑃𝑔2

− 𝑃𝑙2
− 0.036 𝑃𝑔3

− 𝑃𝑙3
≤ 𝑃2,3

𝑚𝑎𝑥

0 ≤ 𝑃𝑔2
≤ 4 

0 ≤ 𝑃𝑔3
≤ 4

𝑃𝐴 min
𝑃𝑔2 ,𝑃𝑔3

𝐶1 −𝑃𝑔2
− 𝑃𝑔3

+ 7.00 + 𝐶2 𝑃𝑔2
+ 𝐶3(𝑃𝑔3

)

𝑠. 𝑡. ∃𝑃𝑙1
∈ 0.50; 1.50 , ∃𝑃𝑙2

∈ 0.50; 1.50 , ∃𝑃𝑙3
∈ 4.00; 6.00

𝑃𝑔1
𝑚𝑖𝑛 ≤ −𝑃𝑔2

− 𝑃𝑔3
+ 𝑃𝑙1

+ 𝑃𝑙2
+ 𝑃𝑙3

≤ 𝑃𝑔1
𝑚𝑖𝑛

…

𝑃𝐵 min
𝑃𝑔2 ,𝑃𝑔3

𝐶1 −𝑃𝑔2
− 𝑃𝑔3

+ 7.00 + 𝐶2 𝑃𝑔2
+ 𝐶3(𝑃𝑔3

)

𝑠. 𝑡. ∀𝑃𝑙1
∈ 0.50; 1.50 , ∀𝑃𝑙2

∈ 0.50; 1.50 , ∀𝑃𝑙3
∈ 4.00; 6.00

𝑃𝑔1
𝑚𝑖𝑛 ≤ −𝑃𝑔2

− 𝑃𝑔3
+ 𝑃𝑙1

+ 𝑃𝑙2
+ 𝑃𝑙3

≤ 𝑃𝑔1
𝑚𝑖𝑛

…



Quantifiers in constraints
Which problem(s) can be used to solve 𝑃 ?
1. 𝑃𝐴

2. 𝑃𝐵

3.  Both
4.  None
5.  I don’t know

Answer 1
𝑃𝐵  cannot be used to solve
𝑃  because in 𝑃  we

choose the loads 𝑃𝑙𝑖
 and

generators 𝑃𝑔𝑖
 setpoints

whereas in 𝑃𝐵  we do not
know which value 𝑃𝑙𝑖

will take. 
𝑃𝐴 is the same as 𝑃 .
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𝑃 min
𝑃𝑔2 ,𝑃𝑔3 ,𝑃𝑙1 ,𝑃𝑙2 ,𝑃𝑙3

𝐶1 −𝑃𝑔2
− 𝑃𝑔3

+ 7.00 + 𝐶2 𝑃𝑔2
+ 𝐶3(𝑃𝑔3

) 

s. t. 𝑃𝑙1
∈ 0.50; 1.50 , 𝑃𝑙2

∈ 0.50; 1.50 , 𝑃𝑙3
∈ 4.00; 6.00

𝑃𝑔1
𝑚𝑖𝑛 ≤ −𝑃𝑔2

− 𝑃𝑔3
+ 𝑃𝑙1

+ 𝑃𝑙2
+ 𝑃𝑙3

≤ 𝑃𝑔1
𝑚𝑎𝑥

−𝑃1,2
𝑚𝑎𝑥≤ 22.2 0.036 𝑃𝑔2

− 𝑃𝑙2
+ 0.018 𝑃𝑔3

− 𝑃𝑙3
≤ 𝑃1,2

𝑚𝑎𝑥

−𝑃1,3
𝑚𝑎𝑥 ≤ 11.1 0.018 𝑃𝑔2

− 𝑃𝑙2
+ 0.054 𝑃𝑔3

− 𝑃𝑙3
≤ 𝑃1,3

𝑚𝑎𝑥

−𝑃2,3
𝑚𝑎𝑥 ≤ 11.1 0.018 𝑃𝑔2

− 𝑃𝑙2
− 0.036 𝑃𝑔3

− 𝑃𝑙3
≤ 𝑃2,3

𝑚𝑎𝑥

0 ≤ 𝑃𝑔2
≤ 4 

0 ≤ 𝑃𝑔3
≤ 4

𝑃𝐴 min
𝑃𝑔2 ,𝑃𝑔3

𝐶1 −𝑃𝑔2
− 𝑃𝑔3

+ 7.00 + 𝐶2 𝑃𝑔2
+ 𝐶3(𝑃𝑔3

)

𝑠. 𝑡. ∃𝑃𝑙1
∈ 0.50; 1.50 , ∃𝑃𝑙2

∈ 0.50; 1.50 , ∃𝑃𝑙3
∈ 4.00; 6.00

𝑃𝑔1
𝑚𝑖𝑛 ≤ −𝑃𝑔2

− 𝑃𝑔3
+ 𝑃𝑙1

+ 𝑃𝑙2
+ 𝑃𝑙3

≤ 𝑃𝑔1
𝑚𝑖𝑛

…

𝑃𝐵 min
𝑃𝑔2 ,𝑃𝑔3

𝐶1 −𝑃𝑔2
− 𝑃𝑔3

+ 7.00 + 𝐶2 𝑃𝑔2
+ 𝐶3(𝑃𝑔3

)

𝑠. 𝑡. ∀𝑃𝑙1
∈ 0.50; 1.50 , ∀𝑃𝑙2

∈ 0.50; 1.50 , ∀𝑃𝑙3
∈ 4.00; 6.00

𝑃𝑔1
𝑚𝑖𝑛 ≤ −𝑃𝑔2

− 𝑃𝑔3
+ 𝑃𝑙1

+ 𝑃𝑙2
+ 𝑃𝑙3

≤ 𝑃𝑔1
𝑚𝑖𝑛

…
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Robust problems with separable constraints

In power systems operation and control, we often solve problems like 
the following (i.e., robust problems) that can be solved by separating 
the constraints.

𝑃 min
𝑢∈ℝ𝑛

𝜑(𝑢)

𝑠. 𝑡. ൝
Constraints on 𝑢

𝑎𝑗 𝑇
𝑢 + 𝑏𝑗 𝑇

𝑑 ≤ 𝛾𝑗 , ∀𝑑 ∈ ℝ𝑝 s. t. 𝐷𝑑 ≤ 𝑐, 𝑗 = 1: 𝐽

where 𝑢 (i.e., the decision variable) are generators setpoints and 𝑑 
(i.e., the stochastic disturbance) is the (aggregated) load. Let us apply 
the “removal of ∀” to every constraint 𝑗 = 1: 𝐽

𝑎𝑗 𝑇
𝑢 + 𝑏𝑗 𝑇

𝑑 ≤ 𝛾𝑗 , ∀𝑑 ∈ ℝ𝑝 s. t.  𝐷𝑑 ≤ 𝑐

⇔ 𝑎𝑗 𝑇
𝑢 ≤ − 𝑏𝑗 𝑇

𝑑+ 𝛾𝑗 , ∀𝑑 ∈ ℝ𝑝 s. t.  𝐷𝑑 ≤ 𝑐

⇔ 𝑎𝑗 𝑇
𝑢 ≤ min

𝑑∈ℝ𝑝,𝐷𝑑≤𝑐
 − 𝑏𝑗 𝑇

𝑑 + 𝛾𝑗 ≝ ℎ𝑗

⇔ 𝑎𝑗 𝑇
𝑢 ≤ ℎ𝑗
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In power systems operation and control, we often solve problems like 
the following (i.e., robust problems) that can be solved by separating 
the constraints.

𝑃 min
𝑢∈ℝ𝑛

𝜑(𝑢)

𝑠. 𝑡. ൝
Constraints on 𝑢

𝑎𝑗 𝑇
𝑢 + 𝑏𝑗 𝑇

𝑑 ≤ 𝛾𝑗 , ∀𝑑 ∈ ℝ𝑝 s. t. 𝐷𝑑 ≤ 𝑐, 𝑗 = 1: 𝐽

Solution:
1. For every 𝑗 = 1: 𝐽 solve the problem:

𝑄𝑗 min
𝑑∈ℝ𝑝

(– 𝑏𝑗 𝑇
𝑑 + 𝛾𝑗)  s. t. 𝐷𝑑 ≤ 𝑐

  let ℎ𝑗 be the optimal value of 𝑄𝑗

2. Replace (𝑃) by the equivalent problem:
𝑃′ min

𝑢∈ℝ𝑛
𝜑(𝑢)

𝑠. 𝑡. ൝
Constraints on 𝑢

𝑎𝑗 𝑇
𝑢 ≤ ℎ𝑗, 𝑗 = 1: 𝐽
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Example: we would like to compute 
the usual DC-OPF assuming loads 
𝑃𝑙1

, 𝑃𝑙2
, 𝑃𝑙3

 (i.e., the disturbances) 

predicted with some uncertainty. 
90𝑀𝑊 ≤ 𝑃𝑙1

≤ 110𝑀𝑊

90𝑀𝑊 ≤ 𝑃𝑙2
≤ 110𝑀𝑊

480𝑀𝑊 ≤ 𝑃𝑙3
≤ 520𝑀𝑊

How does this affect the
dispatch plan ?
Note that we can control only 𝑃𝑔2

, 𝑃𝑔3
 

since bus 1 is the slack bus and 𝑃𝑔1
 is 

determined by the power balance of 
the load flow when 
𝑃𝑔2

, 𝑃𝑔3
, 𝑃𝑙1

, 𝑃𝑙2
, 𝑃𝑙1

are known.
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1 2

3

𝑔1

𝑔3

𝑔2

90𝑀𝑊 ≤ 𝑃𝑙1
≤ 110𝑀𝑊 90𝑀𝑊 ≤ 𝑃𝑙2

≤ 110𝑀𝑊

480𝑀𝑊 ≤ 𝑃𝑙3
≤ 520𝑀𝑊

𝑌2,3 = −𝑗11.1𝑝𝑢

𝑌1,2 = −𝑗22.2𝑝𝑢

𝑌1,3 = −𝑗11.1𝑝𝑢

𝑆𝑏 = 100𝑀𝑉𝐴
𝑉𝑏 = 220𝑘𝑉

min
𝑃𝑔2,𝑃𝑔3

෍
𝑖=1

3

𝐶𝑖 𝑃𝑔𝑖

𝑠. 𝑡.

𝑃𝑔1
+ 𝑃𝑙1

= 22.2 −𝜃2 + 11.1(−𝜃3)

𝑃𝑔2
+ 𝑃𝑙2

= 22.2 𝜃2 + 11.1(𝜃2 − 𝜃3)

𝑃𝑔3
+ 𝑃𝑙3

= 11.1 𝜃3 + 11.1 𝜃3 − 𝜃2

𝑃𝑔𝑖
𝑚𝑖𝑛 ≤ 𝑃𝑔𝑖

≤ 𝑃𝑔𝑖
𝑚𝑎𝑥, 𝑖 = 1,2,3

−𝑃1,2
𝑚𝑎𝑥≤ 𝑃1,2 ≤ 𝑃1,2

𝑚𝑎𝑥

−𝑃1,3
𝑚𝑎𝑥 ≤ 𝑃1,3 ≤ 𝑃1,3

𝑚𝑎𝑥

−𝑃2,3
𝑚𝑎𝑥≤ 𝑃2,3 ≤ 𝑃2,3

𝑚𝑎𝑥

𝑃1,2 = 22.2 0 − 𝜃2

𝑃1,3 = 11.1 0 − 𝜃3

𝑃2,3 = 11.1 𝜃2 − 𝜃3

−𝜋 ≤ 𝜃𝑖≤ 𝜋, 𝑖 = 2,3

Quantity Value

𝑃𝑔𝑖
𝑚𝑖𝑛, 𝑃𝑔𝑖

𝑚𝑎𝑥 0 ÷ 400 𝑀𝑊

𝐶1, 𝐶2, 𝐶3 15, 1, 225 𝐶𝐻𝐹/𝑀𝑊ℎ

𝑆12
𝑚𝑎𝑥, 𝑆23

𝑚𝑎𝑥, 𝑆31
𝑚𝑎𝑥 200, 200, 300 𝑀𝑊

Robust problems with separable constraints



The cost σ𝑖=1
3 𝐶𝑖 𝑃𝑔𝑖

, is influenced by 

the disturbance and cannot be 
known in advance. 

Furthermore, the constraints also 
depend on the disturbance. Our 
choice on 𝑃𝑔2

, 𝑃𝑔3
 must work 

regardless of the disturbance (in this 
sense must be robust).

We need to formulate a problem that 
addresses these two questions:
1. What should we minimize ? 
2. Constraints must be adapted to 

reflect the uncertainty of 
disturbances.
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𝑌2,3 = −𝑗11.1𝑝𝑢

𝑌1,2 = −𝑗22.2𝑝𝑢

𝑆𝑏 = 100𝑀𝑉𝐴
𝑉𝑏 = 220𝑘𝑉

min
𝑃𝑔2,𝑃𝑔3

෍
𝑖=1

3

𝐶𝑖 𝑃𝑔𝑖

𝑠. 𝑡.

𝑃𝑔1
+ 𝑃𝑙1

= 22.2 −𝜃2 + 11.1(−𝜃3)

𝑃𝑔2
+ 𝑃𝑙2

= 22.2 𝜃2 + 11.1(𝜃2 − 𝜃3)

𝑃𝑔3
+ 𝑃𝑙3

= 11.1 𝜃3 + 11.1 𝜃3 − 𝜃2

𝑃𝑔𝑖
𝑚𝑖𝑛 ≤ 𝑃𝑔𝑖

≤ 𝑃𝑔𝑖
𝑚𝑎𝑥, 𝑖 = 1,2,3

−𝑃1,2
𝑚𝑎𝑥≤ 𝑃1,2 ≤ 𝑃1,2

𝑚𝑎𝑥

−𝑃1,3
𝑚𝑎𝑥 ≤ 𝑃1,3 ≤ 𝑃1,3

𝑚𝑎𝑥

−𝑃2,3
𝑚𝑎𝑥≤ 𝑃2,3 ≤ 𝑃2,3

𝑚𝑎𝑥

𝑃1,2 = 22.2 0 − 𝜃2

𝑃1,3 = 11.1 0 − 𝜃3

𝑃2,3 = 11.1 𝜃2 − 𝜃3

−𝜋 ≤ 𝜃𝑖≤ 𝜋, 𝑖 = 2,3

Quantity Value

𝑃𝑔𝑖
𝑚𝑖𝑛, 𝑃𝑔𝑖

𝑚𝑎𝑥 0 ÷ 400 𝑀𝑊

𝐶1, 𝐶2, 𝐶3 15, 1, 225 𝐶𝐻𝐹/𝑀𝑊ℎ

𝑆12
𝑚𝑎𝑥, 𝑆23

𝑚𝑎𝑥, 𝑆31
𝑚𝑎𝑥 200, 200, 300 𝑀𝑊

Robust problems with separable constraints

1 2

3

𝑔1

𝑔3

𝑔2

90𝑀𝑊 ≤ 𝑃𝑙1
≤ 110𝑀𝑊 90𝑀𝑊 ≤ 𝑃𝑙2

≤ 110𝑀𝑊

480𝑀𝑊 ≤ 𝑃𝑙3
≤ 520𝑀𝑊

𝑌1,3 = −𝑗11.1𝑝𝑢
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Stochastic OPF

In a stochastic optimisation problem, we need to take decisions (i.e., 
choose some control parameters 𝑢 ∈ 𝑈) in the presence of a random 
disturbance 𝑑 ∈ 𝐷.

The state of the controlled system 𝑥 will be function of both the control 
and the disturbance 𝑥 = 𝐹(𝑢, 𝑑) and must be feasible (𝑥 ∈  𝑋).
As in the previous OPF formulations, the state 𝑥 consists of all variables 
in the optimization problem other than 𝑢, 𝑑 (e.g., nodal voltages and 
branches powers/currents).

The cost is 𝐶 𝑢, 𝑥 = 𝐶 𝑢, 𝐹 𝑢, 𝑑

A stochastic optimization framework assumes the disturbance to be 
drawn as a random vector in the set 𝐷 (i.e. the modeler knows the 
statistical distribution of the disturbance). 

The objective function is the expected cost (since the disturbance is 
randomly drawn) and the constraints must be satisfied for all possible 
realizations of the disturbance.

24



Stochastic OPF

The feasibility of the constraints has to be imposed for all the drawn 
random disturbances and, therefore, it is guaranteed with some 
probability.

Let  ҧ𝐶  𝑢 = 𝔼 𝐶 𝑢, 𝑥 = 𝔼𝑑 𝐶 𝑢, 𝐹 𝑢, 𝑑

The problem is
min
𝑢∈𝑈 

ҧ𝐶  𝑢  

s. t. ∀𝑑 ∈ 𝐷, ∃𝑥, 𝑥 = 𝐹 𝑢, 𝑑  and 𝑥 ∈ 𝑋

or, in compact form:
min
𝑢∈𝑈 

ҧ𝐶  𝑢  

s. t. ∀𝑑 ∈ 𝐷, 𝐹 𝑢, 𝑑 ∈ 𝑋
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1 2

3

𝑔1

𝑔3

𝑔2

𝑃𝑙1
= 100 ± 10 𝑀𝑊 𝑃𝑙2

= 100 ± 10𝑀𝑊

𝑃𝑙3
= 500 ± 20𝑀𝑊

𝑌2,3 = −𝑗11.1𝑝𝑢

𝑌1,2 = −𝑗22.2𝑝𝑢

𝑌1,3 = −𝑗11.1𝑝𝑢

𝑆𝑏 = 100𝑀𝑉𝐴
𝑉𝑏 = 220𝑘𝑉

min
𝑃𝑔2 ,𝑃𝑔3

𝐶1𝑃𝑔1 + 𝐶2𝑃𝑔2 + 𝐶3𝑃𝑔3

𝑠. 𝑡.

𝑃𝑔𝑖
𝑚𝑖𝑛 ≤ 𝑃𝑔𝑖

≤ 𝑃𝑔𝑖
𝑚𝑎𝑥, 𝑖 = 2,3

∀𝑃𝑙1
∈ 0.9,1.1 , ∀𝑃𝑙2

∈ 0.9,1.1

∀𝑃𝑙3
∈ 4.8,5.2

There exist some 
𝑃𝑔1

, 𝜃2, 𝜃3, 𝑃1,2, 𝑃1,3, 𝑃2,3with

𝑃𝑔1
+ 𝑃𝑙1

= 22.2 −𝜃2 + 11.1(−𝜃3)

𝑃𝑔2
+ 𝑃𝑙2

= 22.2 𝜃2 + 11.1(𝜃2 − 𝜃3)

𝑃𝑔3
+ 𝑃𝑙3

= 11.1 𝜃3 + 11.1 𝜃3 − 𝜃2

ത𝑃𝑔1
= −𝑃𝑔2

− 𝑃𝑔3
+ ത𝑃𝑙1

+ ത𝑃𝑙2
+ ത𝑃𝑙3

𝑃𝑔1
𝑚𝑖𝑛 ≤ 𝑃𝑔1

≤ 𝑃𝑔1
𝑚𝑎𝑥

−𝑃1,2
𝑚𝑎𝑥≤ 𝑃1,2 ≤ 𝑃1,2

𝑚𝑎𝑥

−𝑃1,3
𝑚𝑎𝑥 ≤ 𝑃1,3 ≤ 𝑃1,3

𝑚𝑎𝑥

−𝑃2,3
𝑚𝑎𝑥≤ 𝑃2,3 ≤ 𝑃2,3

𝑚𝑎𝑥

𝑃1,2 = 22.2 0 − 𝜃2

𝑃1,3 = 11.1 0 − 𝜃3

𝑃2,3 = 11.1 𝜃2 − 𝜃3

−𝜋 ≤ 𝜃𝑖≤ 𝜋, 𝑖 = 2,3

ҧ𝐶  𝑢

𝑢 ∈ 𝑈

for all 𝑑 ∈ 𝐷

𝑥 = 𝐹 𝑢, 𝑑
𝑥 ∈ 𝑋

Decision variables: 𝑢 = (𝑃𝑔2
, 𝑃𝑔3

)

Disturbance: 𝑑 = (𝑃𝑙1
, 𝑃𝑙2

, 𝑃𝑙3
)

State: 𝑥 = (𝑃𝑔1
, 𝜃2, 𝜃3, 𝑃1,2, 𝑃1,3, 𝑃2,3)

Expected cost: ҧ𝐶 𝑃𝑔2, 𝑃𝑔3 = 𝐶1𝑃𝑔1 + 𝐶2𝑃𝑔2 + 𝐶3𝑃𝑔3

with ത𝑃𝑔1
= −𝑃𝑔2

− 𝑃𝑔3
+ ത𝑃𝑙1

+ ത𝑃𝑙2
+ ത𝑃𝑙3

we take ത𝑃𝑙1
= 1 𝑝𝑢, ത𝑃𝑙2

= 1 𝑝𝑢 and ത𝑃𝑙3
= 5 𝑝𝑢
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1 2

3

𝑔1

𝑔3

𝑔2

𝑃𝑙1
= 100 ± 10 𝑀𝑊 𝑃𝑙2

= 100 ± 10𝑀𝑊

𝑃𝑙3
= 500 ± 20𝑀𝑊

𝑌2,3 = −𝑗11.1𝑝𝑢

𝑌1,2 = −𝑗22.2𝑝𝑢

𝑌1,3 = −𝑗11.1𝑝𝑢

𝑆𝑏 = 100𝑀𝑉𝐴
𝑉𝑏 = 220𝑘𝑉

In a compact form we have:

min
𝑢∈𝑈 

ҧ𝐶  𝑢  s. t. ∀𝑑 ∈ 𝐷, ∃𝑥, 𝑥 = 𝐹 𝑢, 𝑑  and 𝑥 ∈ 𝑋

or
min
𝑢∈𝑈 

ҧ𝐶  𝑢  s. c. ∀𝑑 ∈ 𝐷, 𝐹 𝑢, 𝑑 ∈ 𝑋

Decision variables: 𝑢 = (𝑃𝑔2
, 𝑃𝑔3

)

Disturbance: 𝑑 = (𝑃𝑙1
, 𝑃𝑙2

, 𝑃𝑙3
)

State: 𝑥 = (𝑃𝑔1
, 𝜃2, 𝜃3, 𝑃1,2, 𝑃1,3, 𝑃2,3) 

Expected cost: 𝐶1𝑃𝑔1 + 𝐶2𝑃𝑔2 + 𝐶3𝑃𝑔3

with ത𝑃𝑔1
= −𝑃𝑔2

− 𝑃𝑔3
+ ത𝑃𝑙1

+ ത𝑃𝑙2
+ ത𝑃𝑙3

We get

𝑃𝑔1
= −𝑃𝑔2

− 𝑃𝑔3
+ 𝑃𝑙1

+ 𝑃𝑙2
+ 𝑃𝑙3

 𝜃2 = 0.036 𝑃𝑔2
− 𝑃𝑙2

+ 0.018(𝑃𝑔3
− 𝑃𝑙3

)

 𝜃3 = 0.018 𝑃𝑔2
− 𝑃𝑙2

+ 0.054 𝑃𝑔3
− 𝑃𝑙3

 𝑃1,2 = 22.2 0.036 𝑃𝑔2
− 𝑃𝑙2

+ 0.018 𝑃𝑔3
− 𝑃𝑙3

 𝑃1,3 = 11.1 0.018 𝑃𝑔2
− 𝑃𝑙2

+ 0.054 𝑃𝑔3
− 𝑃𝑙3

 𝑃2,3 = 11.1 0.018 𝑃𝑔2
− 𝑃𝑙2

− 0.036 𝑃𝑔3
− 𝑃𝑙3

𝑥 = 𝐹 𝑢, 𝑑
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1 2

3

𝑔1

𝑔3

𝑔2

𝑃𝑙1
= 100 ± 10 𝑀𝑊 𝑃𝑙2

= 100 ± 10𝑀𝑊

𝑃𝑙3
= 500 ± 20𝑀𝑊

𝑌2,3 = −𝑗11.1𝑝𝑢

𝑌1,2 = −𝑗22.2𝑝𝑢

𝑌1,3 = −𝑗11.1𝑝𝑢

𝑆𝑏 = 100𝑀𝑉𝐴
𝑉𝑏 = 220𝑘𝑉

The problem is:

min
𝑃𝑔2 ,𝑃𝑔3

ҧ𝐶 𝑃𝑔2
, 𝑃𝑔3

= min
𝑃𝑔2 ,𝑃𝑔3

𝐶1 −𝑃𝑔2
− 𝑃𝑔3

+ 7.00 + 𝐶2 𝑃𝑔2
+ 𝐶3(𝑃𝑔3

) 

∀𝑃𝑙1
∈ 0.90,1.10 , ∀𝑃𝑙2

∈ 0.90,1.10 , ∀𝑃𝑙3
∈ 4.80,5.20

𝑃𝑔1
𝑚𝑖𝑛 ≤ −𝑃𝑔2

− 𝑃𝑔3
+ 𝑃𝑙1

+ 𝑃𝑙2
+ 𝑃𝑙3

≤ 𝑃𝑔1
𝑚𝑎𝑥

−𝑃1,2
𝑚𝑎𝑥≤ 22.2 0.036 𝑃𝑔2

− 𝑃𝑙2
+ 0.018 𝑃𝑔3

− 𝑃𝑙3
≤ 𝑃1,2

𝑚𝑎𝑥

−𝑃1,3
𝑚𝑎𝑥 ≤ 11.1 0.018 𝑃𝑔2

− 𝑃𝑙2
+ 0.054 𝑃𝑔3

− 𝑃𝑙3
≤ 𝑃1,3

𝑚𝑎𝑥

−𝑃2,3
𝑚𝑎𝑥 ≤ 11.1 0.018 𝑃𝑔2

− 𝑃𝑙2
− 0.036 𝑃𝑔3

− 𝑃𝑙3
≤ 𝑃2,3

𝑚𝑎𝑥

𝑃𝑔2
𝑚𝑖𝑛 ≤ 𝑃𝑔2

≤ 𝑃𝑔2
𝑚𝑎𝑥 

𝑃𝑔3
𝑚𝑖𝑛 ≤ 𝑃𝑔3

≤ 𝑃𝑔3
𝑚𝑎𝑥

So, we have obtained a robust problem with separable constraints:

min
𝑢

ҧ𝐶(𝑢)

s. t. 𝑎𝑗 𝑇
𝑢 + 𝑏𝑗 𝑇

𝑑 ≤ 𝛾𝑗 , 𝑗 = 1: 𝐽

∀𝑑 s. t.  𝐷𝑑 ≤ 𝑐

where, for every 𝑗, we have that 𝑎𝑗, 𝑏𝑗 are vectors, with 𝑢 = (𝑃𝑔1
, 𝑃𝑔2

) 

and 𝑑 = (𝑃𝑙1
, 𝑃𝑙2

, 𝑃𝑙3
). This problem can be solved using the approach in 

slide 18 (i.e. solution of robust problems with separable constraints).

ത𝑃𝑙1
+ ത𝑃𝑙2

+ ത𝑃𝑙3
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1 2

3

𝑔1

𝑔3

𝑔2

𝑃𝑙1
= 100 ± 10 𝑀𝑊 𝑃𝑙2

= 100 ± 10𝑀𝑊

𝑃𝑙3
= 500 ± 20𝑀𝑊

𝑌2,3 = −𝑗11.1𝑝𝑢

𝑌1,2 = −𝑗22.2𝑝𝑢

𝑌1,3 = −𝑗11.1𝑝𝑢

𝑆𝑏 = 100𝑀𝑉𝐴
𝑉𝑏 = 220𝑘𝑉

Let’s apply the solution of robust
problems with separable constraints

to the first one (assuming 𝑃𝑔1
𝑚𝑖𝑛 = 0):

∀𝑃𝑙1
∈ 0.90,1.10 , ∀𝑃𝑙2

∈ 0.90,1.10 , ∀𝑃𝑙3
∈ 4.80,5.20

0 ≤ −𝑃𝑔2
− 𝑃𝑔3

+ 𝑃𝑙1
+ 𝑃𝑙2

+ 𝑃𝑙3

That is equivalent to:
∀𝑃𝑙1

∈ 0.9,1.10 , ∀𝑃𝑙2
∈ 0.90,1.10 , ∀𝑃𝑙3

∈ 4.80,5.20 𝑝𝑢

𝑃𝑔2
+ 𝑃𝑔3

≤ 𝑃𝑙1
+ 𝑃𝑙2

+ 𝑃𝑙3

That is equivalent to: 

𝑃𝑔2
+ 𝑃𝑔3

≤ min
𝑃𝑙1 ,𝑃𝑙2 ,𝑃𝑙3

𝑃𝑙1
+ 𝑃𝑙2

+ 𝑃𝑙3
 s.t.𝑃𝑙1

, 𝑃𝑙2
∈ 0.90,1.10 ,𝑃𝑙3

∈ 4.80,5.20

The solution of the above problem gives ℎ1 = 0.90 + 0.90 + 4.80 = 6.60 
Hence, the first constraint of the original problem is equivalent to

𝑃𝑔2
+ 𝑃𝑔3

≤ 6.60.

This process has to be applied to all the constraints of the original 
problem.
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1 2

3

𝑔1

𝑔3

𝑔2

𝑃𝑙1
= 100 ± 10 𝑀𝑊 𝑃𝑙2

= 100 ± 10𝑀𝑊

𝑃𝑙3
= 500 ± 20𝑀𝑊

𝑌2,3 = −𝑗11.1𝑝𝑢

𝑌1,2 = −𝑗22.2𝑝𝑢

𝑌1,3 = −𝑗11.1𝑝𝑢

𝑆𝑏 = 100𝑀𝑉𝐴
𝑉𝑏 = 220𝑘𝑉

After having applied the previous
process to all the constraints, the
original problem becomes:

min
𝑃𝑔2 ,𝑃𝑔3

ҧ𝐶 𝑃𝑔2
, 𝑃𝑔3

= 𝐶1 −𝑃𝑔2
− 𝑃𝑔3

+ 7.00 + 𝐶2 𝑃𝑔2
+ 𝐶3(𝑃𝑔3

)

𝑠. 𝑡.
3.4 ≤ 𝑃𝑔2

+ 𝑃𝑔3
≤ 6.6

0.96 ≤ 0.8𝑃𝑔2
+ 0.4𝑃𝑔3

≤ 4.64

0.34 ≤ 0.2𝑃𝑔2
+ 0.6𝑃𝑔3

≤ 6.06

−0.1 ≤ −0.2𝑃𝑔2
+ 0.4𝑃𝑔3

≤ 3.7

0 ≤ 𝑃𝑔2
≤ 4; 0 ≤ 𝑃𝑔3

≤ 4

The optimal values of the decision variables are:
𝑃𝑔2

∗ = 2.43𝑝𝑢 = 243𝑀𝑊

𝑃𝑔3
∗ = 0.97𝑝𝑢 = 97𝑀𝑊

the expected generation ത𝑃𝑔1
 from 𝑔1 is:

ത𝑃𝑔1
= −𝑃𝑔2

− 𝑃𝑔3
+ ത𝑃𝑙1

+ ത𝑃𝑙2
+ ത𝑃𝑙3

= −2.43 − 0.97 + 1 + 1 + 5 = 3.6𝑝𝑢

= 360𝑀𝑊

and the expected cost is ҧ𝐶 𝑃𝑔2
, 𝑃𝑔3

= 27′393𝐶𝐻𝐹.
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1 2

3

𝑔1

𝑔3

𝑔2

𝑃𝑙1
= 100 ± 51 𝑀𝑊 𝑃𝑙2

= 100 ± 51𝑀𝑊

𝑃𝑙3
= 500 ± 101𝑀𝑊

𝑌2,3 = −𝑗11.1𝑝𝑢

𝑌1,2 = −𝑗22.2𝑝𝑢

𝑌1,3 = −𝑗11.1𝑝𝑢

𝑆𝑏 = 100𝑀𝑉𝐴
𝑉𝑏 = 220𝑘𝑉

It is interesting to note that, if we
increase the uncertainties to values
as in the  figure, the problem becomes

min
𝑃𝑔2 ,𝑃𝑔3

ҧ𝐶 𝑃𝑔2
, 𝑃𝑔3

= 𝐶1 −𝑃𝑔2
− 𝑃𝑔3

+ 7.00 + 𝐶2 𝑃𝑔2
+ 𝐶3(𝑃𝑔3

)

𝑠. 𝑡.
5.03 ≤ 𝑃𝑔2

+ 𝑃𝑔3
≤ 4.97

1.612 ≤ 0.8𝑃𝑔2
+ 0.4𝑃𝑔3

≤ 3.988

0.908 ≤ 0.2𝑃𝑔2
+ 0.6𝑃𝑔3

≤ 5.492

0.306 ≤ −0.2𝑃𝑔2
+ 0.4𝑃𝑔3

≤ 3.294

0 ≤ 𝑃𝑔2
≤ 4; 0 ≤ 𝑃𝑔3

≤ 4

That is infeasible. In other words, the amount of uncertainties in the 
loads is so high that we cannot find an optimal solution.

It is also interesting to note that, by increasing the uncertainties, the 
global cost of the system progressively increases until the problem 
becomes infeasible.



Stochastic OPF

In general, it is difficult to have deterministic bounds on the stochastic 
variables (in our case 𝑃𝑙1

, 𝑃𝑙2
, 𝑃𝑙3

).

Therefore, we can assume these quantities to be within some bounds 
with a certain probability.
Let us assume that the unknown loads are independent and follow 
normal distributions: 𝑃𝑙𝑖

∼ 𝒩( ത𝑃𝑙𝑖
, 𝑣𝑙𝑖

) where ത𝑃𝑙𝑖
is the expected value and 

𝑣𝑙𝑖
 the variance.

Let 𝜂 be such that ℙ −𝜂 ≤ 𝑋 ≤ 𝜂 = 1 − 𝛼 where 𝑋 ∼ 𝒩 0,1  (standard 
normal distribution, for example, 𝜂 = 1.96 when 𝛼 = 0.05).

Then with probability 1 − 𝜀 = 1 − 𝛼 3:
ത𝑃𝑙1

− 𝜂 𝑣𝑙1
≤ 𝑃𝑙1

≤ ത𝑃𝑙1
+ 𝜂 𝑣𝑙1

ത𝑃𝑙2
− 𝜂 𝑣𝑙2

≤ 𝑃𝑙2
≤ ത𝑃𝑙2

+ 𝜂 𝑣𝑙2

ത𝑃𝑙3
− 𝜂 𝑣𝑙3

≤ 𝑃𝑙3
≤ ത𝑃𝑙3

+ 𝜂 𝑣𝑙3

The above inequalities are called chance constraints.

For  example, with 𝜀 = 0.0001 we must take 𝛼 = 3.33 ⋅ 10−5 and 𝜂 = 4.15.  
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With these inequalities

ത𝑃𝑙1
− 𝜂 𝑣𝑙1

≤ 𝑃𝑙1
≤ ത𝑃𝑙1

+ 𝜂 𝑣𝑙1

ത𝑃𝑙2
− 𝜂 𝑣𝑙2

≤ 𝑃𝑙2
≤ ത𝑃𝑙2

+ 𝜂 𝑣𝑙2

ത𝑃𝑙3
− 𝜂 𝑣𝑙3

≤ 𝑃𝑙3
≤ ത𝑃𝑙3

+ 𝜂 𝑣𝑙3

we have now a robust optimization problem, same as before, but with 
different bounds on the disturbance and a different cost function (with 
a term that accounts for the variance).



Stochastic OPF

To summarize.

System state:  𝑥 = 𝐹(𝑢, 𝑑) electric state, power flows.
Decision variables: 𝑢 generator setpoints 𝑢 ∈ 𝑈.
Disturbance: 𝑑 aggregated renewables+loads.

We want to minimize 𝔼(𝐶(𝑢, 𝑥)) subject to feasibility (𝑥 ∈ 𝑋) regardless of 
disturbance, with high probability

min
𝑢∈𝑈

𝔼𝑑(𝑐(𝑢, 𝐹(𝑢, 𝑑))

𝑠. 𝑡. ℙ 𝐹 𝑢, 𝑑 ∈ 𝑋 ≥ 1 − 𝜀

where 𝜀  is a small probability (risk of failure). The chance constraint is 
transformed into the constraint 𝑑 ∈ 𝐷 such that ℙ 𝑑 ∈ 𝐷 = 1 − 𝜀:

min
𝑢∈𝑈

ҧ𝑐(𝑢)

𝑠. 𝑡. ∀𝑑 ∈ 𝐷 𝐴𝑢 + 𝐵𝑑 ≤ 𝑒

where ҧ𝐶 𝑢 = 𝔼𝑑(𝐶(𝑢, 𝐹 𝑢, 𝑑 ). The problem is then transformed into a 
standard optimization by eliminating 𝑑 (i.e., removing the quantifier ∀).
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Robust OPF

In power systems, there are many cases where the grid operator may 
take decisions that are not necessarily optimal but robust in the sense 
that the solution is determined for the worst-case cost associated to 
stochastic variables.
This is an alternative to stochastic optimization and is also called non-
probabilistic robust optimization.
We choose a control 𝑢 ∈ 𝑈.
Disturbance 𝑑 ∈ 𝐷 are random.
The system state 𝑥 becomes 𝑥 = 𝐹(𝑢, 𝑑) and we want it to be feasible 
(𝑥 ∈  𝑋).
We pay a cost 𝐶 𝑢, 𝑥 = 𝐶(𝑢, 𝐹(𝑢, 𝑑)).
Non-probabilistic robust optimization assumes the disturbance is drawn 
in a set 𝐷 (no distribution is assumed, only bounds) and the 
optimization function is the worst-case cost. The constraints are the 
standard feasibility ones. In other words, we obtain:

 min
𝑢∈𝑈

max
𝑑∈𝐷

𝐶 𝑢, 𝐹 𝑢, 𝑑

 s.c. 𝐹 𝑢, 𝑑 ∈ 𝑋, ∀ 𝑑 ∈ 𝐷
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1 2

3

𝑔1

𝑔3

𝑔2

𝑃𝑙1
= 100 ± 10 𝑀𝑊 𝑃𝑙2

= 100 ± 10𝑀𝑊

𝑃𝑙3
= 500 ± 20𝑀𝑊

𝑌2,3 = −𝑗11.1𝑝𝑢

𝑌1,2 = −𝑗22.2𝑝𝑢

𝑌1,3 = −𝑗11.1𝑝𝑢

𝑆𝑏 = 100𝑀𝑉𝐴
𝑉𝑏 = 220𝑘𝑉

Let us write the robust OPF for the
three-bus example whose load flow
constraint are represented by
the DC load flow.

Important observation: the constraints
are the same as in the stochastic OPF
only the objective function is different.

min
𝑃𝑔2 ,𝑃𝑔3

m𝑎𝑥
𝑃𝑙1∈ 0.9,1.1 ,𝑃𝑙2∈ 0.9,1.1

𝑃𝑙3∈ 4.8,5.2

 𝐶1 −𝑃𝑔2
− 𝑃𝑔3

+ 𝑃𝑙1
+ 𝑃𝑙2

+ 𝑃𝑙3
+ 𝐶2𝑃𝑔2 + 𝐶3𝑃𝑔3

𝑠. 𝑡.

∀𝑃𝑙1
∈ 0.90,1.10 , ∀𝑃𝑙2

∈ 0.90,1.10 , ∀𝑃𝑙3
∈ 4.80,5.20

𝑃𝑔1
𝑚𝑖𝑛 ≤ −𝑃𝑔2

− 𝑃𝑔3
+ 𝑃𝑙1

+ 𝑃𝑙2
+ 𝑃𝑙3

≤ 𝑃𝑔1
𝑚𝑎𝑥

−𝑃1,2
𝑚𝑎𝑥≤ 22.2 0.036 𝑃𝑔2

− 𝑃𝑙2
+ 0.018 𝑃𝑔3

− 𝑃𝑙3
≤ 𝑃1,2

𝑚𝑎𝑥

−𝑃1,3
𝑚𝑎𝑥 ≤ 11.1 0.018 𝑃𝑔2

− 𝑃𝑙2
+ 0.054 𝑃𝑔3

− 𝑃𝑙3
≤ 𝑃1,3

𝑚𝑎𝑥

−𝑃2,3
𝑚𝑎𝑥 ≤ 11.1 0.018 𝑃𝑔2

− 𝑃𝑙2
− 0.036 𝑃𝑔3

− 𝑃𝑙3
≤ 𝑃2,3

𝑚𝑎𝑥

𝑃𝑔2
𝑚𝑖𝑛 ≤ 𝑃𝑔2

≤ 𝑃𝑔2
𝑚𝑎𝑥 

𝑃𝑔3
𝑚𝑖𝑛 ≤ 𝑃𝑔3

≤ 𝑃𝑔3
𝑚𝑎𝑥
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1 2

3

𝑔1

𝑔3

𝑔2

𝑃𝑙1
= 100 ± 10 𝑀𝑊 𝑃𝑙2

= 100 ± 10𝑀𝑊

𝑃𝑙3
= 500 ± 20𝑀𝑊

𝑌2,3 = −𝑗11.1𝑝𝑢

𝑌1,2 = −𝑗22.2𝑝𝑢

𝑌1,3 = −𝑗11.1𝑝𝑢

𝑆𝑏 = 100𝑀𝑉𝐴
𝑉𝑏 = 220𝑘𝑉

For the inner max problem

m𝑎𝑥
𝑃𝑙1∈ 0.9,1.1 ,𝑃𝑙2∈ 0.9,1.1

𝑃𝑙3∈ 4.8,5.2

 𝐶1 −𝑃𝑔2
− 𝑃𝑔3

+ 𝑃𝑙1
+ 𝑃𝑙2

+ 𝑃𝑙3

+𝐶2𝑃𝑔2 + 𝐶3𝑃𝑔3

we can easily compute the maximum
value (i.e., in correspondence of the
maximum loads) and obtain the
following problem:

min
𝑃𝑔2 ,𝑃𝑔3

 𝐶1 −𝑃𝑔2
− 𝑃𝑔3

+ 7.4 + 𝐶2𝑃𝑔2 + 𝐶3𝑃𝑔3

𝑠. 𝑡.

∀𝑃𝑙1
∈ 0.90,1.10 , ∀𝑃𝑙2

∈ 0.90,1.10 , ∀𝑃𝑙3
∈ 4.80,5.20

𝑃𝑔1
𝑚𝑖𝑛 ≤ −𝑃𝑔2

− 𝑃𝑔3
+ 𝑃𝑙1

+ 𝑃𝑙2
+ 𝑃𝑙3

≤ 𝑃𝑔1
𝑚𝑎𝑥

−𝑃1,2
𝑚𝑎𝑥≤ 22.2 0.036 𝑃𝑔2

− 𝑃𝑙2
+ 0.018 𝑃𝑔3

− 𝑃𝑙3
≤ 𝑃1,2

𝑚𝑎𝑥

−𝑃1,3
𝑚𝑎𝑥 ≤ 11.1 0.018 𝑃𝑔2

− 𝑃𝑙2
+ 0.054 𝑃𝑔3

− 𝑃𝑙3
≤ 𝑃1,3

𝑚𝑎𝑥

−𝑃2,3
𝑚𝑎𝑥 ≤ 11.1 0.018 𝑃𝑔2

− 𝑃𝑙2
− 0.036 𝑃𝑔3

− 𝑃𝑙3
≤ 𝑃2,3

𝑚𝑎𝑥

𝑃𝑔2
𝑚𝑖𝑛 ≤ 𝑃𝑔2

≤ 𝑃𝑔2
𝑚𝑎𝑥 

𝑃𝑔3
𝑚𝑖𝑛 ≤ 𝑃𝑔3

≤ 𝑃𝑔3
𝑚𝑎𝑥

Observation: the objective 
of this problem is similar to 

the one of the stochastic 

OPF where, instead, the 

disturbance was taken to 

the average value: 

𝐶1 −𝑃𝑔2
− 𝑃𝑔3

+ 7.0 + 𝐶2 𝑃𝑔2

+ 𝐶3(𝑃𝑔3
)

Here is the worst-case cost.
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Let us try to generalise the removal of max from the problem 
objective. Robust OPF have the following generic form:

min
𝑢∈𝑈

max
𝑑′∈𝐷

𝜑 𝑢, 𝑑′

s. t. 𝑎𝑗 𝑇
𝑢 + 𝑏𝑗 𝑇

𝑑 ≤ 𝛾𝑗 , ∀𝑑 ∈ 𝐷, 𝑗 = 1: 𝐽

To get rid of the max in the objective function, recall from lecture 4.1, 
the max-removal transformation applied to the above. We have that

min
𝑢∈𝑈

max
𝑗=1:𝐽

𝜑𝑗 𝑢

s. t.
(constraints on 𝑢)

is equivalent to:
min

𝑢∈𝑈,𝜀∈ℝ
𝜀

s. t. ൝
𝜀 ≥ 𝜑𝑗 𝑢 , 𝑗 = 1: 𝐽

(constraints on 𝑢)



Robust OPF 40

Therefore, our robust OPF of the generic form:

min
𝑢∈𝑈

max
𝑑′∈𝐷

𝜑 𝑢, 𝑑′

s. t. 𝑎𝑗 𝑇
𝑢 + 𝑏𝑗 𝑇

𝑑 ≤ 𝛾𝑗 , ∀𝑑 ∈ 𝐷, 𝑗 = 1: 𝐽

is equivalent to:
min

𝑢 ∈𝑈,𝜀∈ℝ 
𝜀

s. t. ቐ
𝜑 𝑢, 𝑑 ≤ 𝜀, ∀𝑑 ∈ 𝐷

𝑎𝑗 𝑇
𝑢 + 𝑏𝑗 𝑇

𝑑 ≤ 𝛾𝑗 , ∀𝑑 ∈ 𝐷, 𝑗 = 1: 𝐽

Note that in the above problem, we have the quantifier ∀ in the 
constraints, which we can be solved using the approach in slide 18 
(i.e. solution of robust problems with separable constraints).
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1 2

3

𝑔1

𝑔3

𝑔2

𝑃𝑙1
= 100 ± 10 𝑀𝑊 𝑃𝑙2

= 100 ± 10𝑀𝑊

𝑃𝑙3
= 500 ± 20𝑀𝑊

𝑌2,3 = −𝑗11.1𝑝𝑢

𝑌1,2 = −𝑗22.2𝑝𝑢

𝑌1,3 = −𝑗11.1𝑝𝑢

𝑆𝑏 = 100𝑀𝑉𝐴
𝑉𝑏 = 220𝑘𝑉

Let us take back our example.
By using the max-removal transformation
we have that the robust OPF is

min
𝑃𝑔2 ,𝑃𝑔3 ,𝜀

𝜀

𝑠. 𝑡.

∀𝑃𝑙1
∈ 0.90,1.10 , ∀𝑃𝑙2

∈ 0.90,1.10 , ∀𝑃𝑙3
∈ 4.80,5.20

 𝐶1 −𝑃𝑔2
− 𝑃𝑔3

+ 𝑃𝑙1
+ 𝑃𝑙2

+ 𝑃𝑙3
+ 𝐶2𝑃𝑔2 + 𝐶3𝑃𝑔3  ≤ 𝜀

𝑃𝑔1
𝑚𝑖𝑛 ≤ −𝑃𝑔2

− 𝑃𝑔3
+ 𝑃𝑙1

+ 𝑃𝑙2
+ 𝑃𝑙3

≤ 𝑃𝑔1
𝑚𝑎𝑥

−𝑃1,2
𝑚𝑎𝑥≤ 22.2 0.036 𝑃𝑔2

− 𝑃𝑙2
+ 0.018 𝑃𝑔3

− 𝑃𝑙3
≤ 𝑃1,2

𝑚𝑎𝑥

−𝑃1,3
𝑚𝑎𝑥 ≤ 11.1 0.018 𝑃𝑔2

− 𝑃𝑙2
+ 0.054 𝑃𝑔3

− 𝑃𝑙3
≤ 𝑃1,3

𝑚𝑎𝑥

−𝑃2,3
𝑚𝑎𝑥 ≤ 11.1 0.018 𝑃𝑔2

− 𝑃𝑙2
− 0.036 𝑃𝑔3

− 𝑃𝑙3
≤ 𝑃2,3

𝑚𝑎𝑥

𝑃𝑔2
𝑚𝑖𝑛 ≤ 𝑃𝑔2

≤ 𝑃𝑔2
𝑚𝑎𝑥 

𝑃𝑔3
𝑚𝑖𝑛 ≤ 𝑃𝑔3

≤ 𝑃𝑔3
𝑚𝑎𝑥

To solve it, we remove ∀, as shown earlier, by computing the worst 
case over 𝑃𝑙𝑖

 for each constraint.
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1 2

3

𝑔1

𝑔3

𝑔2

𝑃𝑙1
= 100 ± 10 𝑀𝑊 𝑃𝑙2

= 100 ± 10𝑀𝑊

𝑃𝑙3
= 500 ± 20𝑀𝑊

𝑌2,3 = −𝑗11.1𝑝𝑢

𝑌1,2 = −𝑗22.2𝑝𝑢

𝑌1,3 = −𝑗11.1𝑝𝑢

𝑆𝑏 = 100𝑀𝑉𝐴
𝑉𝑏 = 220𝑘𝑉

(A)            min
𝑃𝑔2,𝑃𝑔3,𝜀

𝜀  s. t.

 𝐶1 −𝑃𝑔2
− 𝑃𝑔3

+ 7.4 + 𝐶2𝑃𝑔2 + 𝐶3𝑃𝑔3  ≤ 𝜀

3.4 ≤ 𝑃𝑔2
+ 𝑃𝑔3

≤ 6.6

0.96 ≤ 0.8𝑃𝑔2
+ 0.4𝑃𝑔3

≤ 4.64

0.34 ≤ 0.2𝑃𝑔2
+ 0.6𝑃𝑔3

≤ 6.06

−0.1 ≤ −0.2𝑃𝑔2
+ 0.4𝑃𝑔3

≤ 3.7

0 ≤ 𝑃𝑔2
≤ 4; 0 ≤ 𝑃𝑔3

≤ 4

(B) min
𝑃𝑔2,𝑃𝑔3

 𝐶1 −𝑃𝑔2
− 𝑃𝑔3

+ 7.4 + 𝐶2𝑃𝑔2 + 𝐶3𝑃𝑔3 

                  s. t. 
3.4 ≤ 𝑃𝑔2

+ 𝑃𝑔3
≤ 6.6

0.96 ≤ 0.8𝑃𝑔2
+ 0.4𝑃𝑔3

≤ 4.64

0.34 ≤ 0.2𝑃𝑔2
+ 0.6𝑃𝑔3

≤ 6.06

−0.1 ≤ −0.2𝑃𝑔2
+ 0.4𝑃𝑔3

≤ 3.7

0 ≤ 𝑃𝑔2
≤ 4; 0 ≤ 𝑃𝑔3

≤ 4

With respect to the robust OPF:
min

𝑃𝑔2,𝑃𝑔3

m𝑎𝑥
𝑃𝑙1∈ 0.9,1.1 ,𝑃𝑙2∈ 0.9,1.1

𝑃𝑙3∈ 4.8,5.2

 𝐶1 −𝑃𝑔2
− 𝑃𝑔3

+ 𝑃𝑙1
+ 𝑃𝑙2

+ 𝑃𝑙3
+ 𝐶2𝑃𝑔2 + 𝐶3𝑃𝑔3

𝑠. 𝑡.

∀𝑃𝑙1
∈ 0.90,1.10 , ∀𝑃𝑙2

∈ 0.90,1.10 , ∀𝑃𝑙3
∈ 4.80,5.20

𝑃𝑔1
𝑚𝑖𝑛 ≤ −𝑃𝑔2

− 𝑃𝑔3
+ 𝑃𝑙1

+ 𝑃𝑙2
+ 𝑃𝑙3

≤ 𝑃𝑔1
𝑚𝑎𝑥

−𝑃1,2
𝑚𝑎𝑥≤ 22.2 0.036 𝑃𝑔2

− 𝑃𝑙2
+ 0.018 𝑃𝑔3

− 𝑃𝑙3
≤ 𝑃1,2

𝑚𝑎𝑥

−𝑃1,3
𝑚𝑎𝑥 ≤ 11.1 0.018 𝑃𝑔2

− 𝑃𝑙2
+ 0.054 𝑃𝑔3

− 𝑃𝑙3
≤ 𝑃1,3

𝑚𝑎𝑥

−𝑃2,3
𝑚𝑎𝑥 ≤ 11.1 0.018 𝑃𝑔2

− 𝑃𝑙2
− 0.036 𝑃𝑔3

− 𝑃𝑙3
≤ 𝑃2,3

𝑚𝑎𝑥

𝑃𝑔2
𝑚𝑖𝑛 ≤ 𝑃𝑔2

≤ 𝑃𝑔2
𝑚𝑎𝑥 

𝑃𝑔3
𝑚𝑖𝑛 ≤ 𝑃𝑔3

≤ 𝑃𝑔3
𝑚𝑎𝑥

Which formulation is correct ?

1. A

2. B

3. Both

4. None

5. I don’t know
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1 2

3

𝑔1

𝑔3

𝑔2

𝑃𝑙1
= 100 ± 10 𝑀𝑊 𝑃𝑙2

= 100 ± 10𝑀𝑊

𝑃𝑙3
= 500 ± 20𝑀𝑊

𝑌2,3 = −𝑗11.1𝑝𝑢

𝑌1,2 = −𝑗22.2𝑝𝑢

𝑌1,3 = −𝑗11.1𝑝𝑢

𝑆𝑏 = 100𝑀𝑉𝐴
𝑉𝑏 = 220𝑘𝑉

With respect to the robust OPF:
min

𝑃𝑔2,𝑃𝑔3

m𝑎𝑥
𝑃𝑙1∈ 0.9,1.1 ,𝑃𝑙2∈ 0.9,1.1

𝑃𝑙3∈ 4.8,5.2

 𝐶1 −𝑃𝑔2
− 𝑃𝑔3

+ 𝑃𝑙1
+ 𝑃𝑙2

+ 𝑃𝑙3
+ 𝐶2𝑃𝑔2 + 𝐶3𝑃𝑔3

𝑠. 𝑡.

∀𝑃𝑙1
∈ 0.90,1.10 , ∀𝑃𝑙2

∈ 0.90,1.10 , ∀𝑃𝑙3
∈ 4.80,5.20

𝑃𝑔1
𝑚𝑖𝑛 ≤ −𝑃𝑔2

− 𝑃𝑔3
+ 𝑃𝑙1

+ 𝑃𝑙2
+ 𝑃𝑙3

≤ 𝑃𝑔1
𝑚𝑎𝑥

−𝑃1,2
𝑚𝑎𝑥≤ 22.2 0.036 𝑃𝑔2

− 𝑃𝑙2
+ 0.018 𝑃𝑔3

− 𝑃𝑙3
≤ 𝑃1,2

𝑚𝑎𝑥

−𝑃1,3
𝑚𝑎𝑥 ≤ 11.1 0.018 𝑃𝑔2

− 𝑃𝑙2
+ 0.054 𝑃𝑔3

− 𝑃𝑙3
≤ 𝑃1,3

𝑚𝑎𝑥

−𝑃2,3
𝑚𝑎𝑥 ≤ 11.1 0.018 𝑃𝑔2

− 𝑃𝑙2
− 0.036 𝑃𝑔3

− 𝑃𝑙3
≤ 𝑃2,3

𝑚𝑎𝑥

𝑃𝑔2
𝑚𝑖𝑛 ≤ 𝑃𝑔2

≤ 𝑃𝑔2
𝑚𝑎𝑥 

𝑃𝑔3
𝑚𝑖𝑛 ≤ 𝑃𝑔3

≤ 𝑃𝑔3
𝑚𝑎𝑥

Which formulation is correct ?

1. A

2. B

3. Both

4. None

5. I don’t know

Answer 3
(B) is the formulation seen earlier with the max and is correct.
(A) is the formulation obtained by applying the generic method to

remove max from the objective function and is correct.

Both are equivalent. (A) has fewer optimization variables but needs
more work. (B) requires less work.

(A)            min
𝑃𝑔2,𝑃𝑔3,𝜀

𝜀  s. t.

 𝐶1 −𝑃𝑔2
− 𝑃𝑔3

+ 7.4 + 𝐶2𝑃𝑔2 + 𝐶3𝑃𝑔3  ≤ 𝜀

3.4 ≤ 𝑃𝑔2
+ 𝑃𝑔3

≤ 6.6

0.96 ≤ 0.8𝑃𝑔2
+ 0.4𝑃𝑔3

≤ 4.64

0.34 ≤ 0.2𝑃𝑔2
+ 0.6𝑃𝑔3

≤ 6.06

−0.1 ≤ −0.2𝑃𝑔2
+ 0.4𝑃𝑔3

≤ 3.7

0 ≤ 𝑃𝑔2
≤ 4; 0 ≤ 𝑃𝑔3

≤ 4

(B) min
𝑃𝑔2,𝑃𝑔3

 𝐶1 −𝑃𝑔2
− 𝑃𝑔3

+ 7.4 + 𝐶2𝑃𝑔2 + 𝐶3𝑃𝑔3 

                  s. t. 
3.4 ≤ 𝑃𝑔2

+ 𝑃𝑔3
≤ 6.6

0.96 ≤ 0.8𝑃𝑔2
+ 0.4𝑃𝑔3

≤ 4.64

0.34 ≤ 0.2𝑃𝑔2
+ 0.6𝑃𝑔3

≤ 6.06

−0.1 ≤ −0.2𝑃𝑔2
+ 0.4𝑃𝑔3

≤ 3.7

0 ≤ 𝑃𝑔2
≤ 4; 0 ≤ 𝑃𝑔3

≤ 4
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1 2

3

𝑔1

𝑔3

𝑔2

𝑃𝑙1
= 100 ± 10 𝑀𝑊 𝑃𝑙2

= 100 ± 10𝑀𝑊

𝑃𝑙3
= 500 ± 20𝑀𝑊

𝑌2,3 = −𝑗11.1𝑝𝑢

𝑌1,2 = −𝑗22.2𝑝𝑢

𝑌1,3 = −𝑗11.1𝑝𝑢

𝑆𝑏 = 100𝑀𝑉𝐴
𝑉𝑏 = 220𝑘𝑉

With respect to the robust OPF:
min

𝑃𝑔2,𝑃𝑔3

m𝑎𝑥
𝑃𝑙1∈ 0.9,1.1 ,𝑃𝑙2∈ 0.9,1.1

𝑃𝑙3∈ 4.8,5.2

 𝐶1 −𝑃𝑔2
− 𝑃𝑔3

+ 𝑃𝑙1
+ 𝑃𝑙2

+ 𝑃𝑙3
+ 𝐶2𝑃𝑔2 + 𝐶3𝑃𝑔3

𝑠. 𝑡.

∀𝑃𝑙1
∈ 0.90,1.10 , ∀𝑃𝑙2

∈ 0.90,1.10 , ∀𝑃𝑙3
∈ 4.80,5.20

𝑃𝑔1
𝑚𝑖𝑛 ≤ −𝑃𝑔2

− 𝑃𝑔3
+ 𝑃𝑙1

+ 𝑃𝑙2
+ 𝑃𝑙3

≤ 𝑃𝑔1
𝑚𝑎𝑥

−𝑃1,2
𝑚𝑎𝑥≤ 22.2 0.036 𝑃𝑔2

− 𝑃𝑙2
+ 0.018 𝑃𝑔3

− 𝑃𝑙3
≤ 𝑃1,2

𝑚𝑎𝑥

−𝑃1,3
𝑚𝑎𝑥 ≤ 11.1 0.018 𝑃𝑔2

− 𝑃𝑙2
+ 0.054 𝑃𝑔3

− 𝑃𝑙3
≤ 𝑃1,3

𝑚𝑎𝑥

−𝑃2,3
𝑚𝑎𝑥 ≤ 11.1 0.018 𝑃𝑔2

− 𝑃𝑙2
− 0.036 𝑃𝑔3

− 𝑃𝑙3
≤ 𝑃2,3

𝑚𝑎𝑥

𝑃𝑔2
𝑚𝑖𝑛 ≤ 𝑃𝑔2

≤ 𝑃𝑔2
𝑚𝑎𝑥 

𝑃𝑔3
𝑚𝑖𝑛 ≤ 𝑃𝑔3

≤ 𝑃𝑔3
𝑚𝑎𝑥

The optimal values of the decision
variables are:
𝑃𝑔2

∗ = 2.43𝑝𝑢 = 243𝑀𝑊

𝑃𝑔3
∗ = 0.97𝑝𝑢 = 97𝑀𝑊

So, these are the same obtained for
the stochastic OPF.

However, the value of the objective is

27′993𝐶𝐻𝐹. Therefore, higher than for the
case of the stochastic OPF since we
optimised for the worst-case cost.

(A)            min
𝑃𝑔2,𝑃𝑔3,𝜀

𝜀  s. t.

 𝐶1 −𝑃𝑔2
− 𝑃𝑔3

+ 7.4 + 𝐶2𝑃𝑔2 + 𝐶3𝑃𝑔3  ≤ 𝜀

3.4 ≤ 𝑃𝑔2
+ 𝑃𝑔3

≤ 6.6

0.96 ≤ 0.8𝑃𝑔2
+ 0.4𝑃𝑔3

≤ 4.64

0.34 ≤ 0.2𝑃𝑔2
+ 0.6𝑃𝑔3

≤ 6.06

−0.1 ≤ −0.2𝑃𝑔2
+ 0.4𝑃𝑔3

≤ 3.7

0 ≤ 𝑃𝑔2
≤ 4; 0 ≤ 𝑃𝑔3

≤ 4

(B) min
𝑃𝑔2,𝑃𝑔3

 𝐶1 −𝑃𝑔2
− 𝑃𝑔3

+ 7.4 + 𝐶2𝑃𝑔2 + 𝐶3𝑃𝑔3 

                  s. t. 
3.4 ≤ 𝑃𝑔2

+ 𝑃𝑔3
≤ 6.6

0.96 ≤ 0.8𝑃𝑔2
+ 0.4𝑃𝑔3

≤ 4.64

0.34 ≤ 0.2𝑃𝑔2
+ 0.6𝑃𝑔3

≤ 6.06

−0.1 ≤ −0.2𝑃𝑔2
+ 0.4𝑃𝑔3

≤ 3.7

0 ≤ 𝑃𝑔2
≤ 4; 0 ≤ 𝑃𝑔3

≤ 4
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